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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Arboreal and Acyclic Colorings

An arboreal coloring of a graph G is a partition of the vertex set
into subsets inducing forests. It is complete if there is a cycle in
the merge of any two color classes.

Vertex arboricity va(G )
Minimum number of colors in
arboreal coloring

va(G ) = 2

A-vertex arboricity ava(G )
Maximum number of colors in
complete arboreal coloring

ava(G ) = 4
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Arboreal and Acyclic Colorings

An acyclic coloring of a digraph D is a partition of the vertex set
into subsets inducing acyclic digraphs. It is complete if there is a
directed cycle in the merge of any two color classes.

Dichromatic number ~χ(D)
Minimum number of colors in
acyclic coloring

~χ(D) = 2

Adichromatic number adi(D)
Maximum number of colors in
complete acyclic coloring

adi(D) = 3
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Complete Bipartite Graphs

va(Kn,n) = 2
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Complete Bipartite Graphs

ava(Kn,n) = n
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Subgraphs

ava(G ) = 2ava(G ′) = 3

Lemma

If G ′ is an induced subgraph of G, then ava(G ′) ≤ ava(G ).

ava(G ′) = 3 ava(G ) ≥ 3
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Subgraphs

ava(G ) = 2ava(G ′) = 3

Lemma

If G ′ is an induced subgraph of G, then ava(G ′) ≤ ava(G ).

Lemma

If D ′ is an induced subdigraph of D, then adi(D ′) ≤ adi(D).
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Induced Minors and Subdivisions

Lemma

If e is a simple edge, then ava(G/e) ≤ ava(G ).

e
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Induced Minors and Subdivisions

Corollary

If H is an induced minor of G, then ava(H) ≤ ava(G ).

H G
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Relation to Feedback Vertex Sets

Definition

A feedback vertex set of a graph (digraph) is a vertex set whose
deletion yields a forest (acyclic digraph).

Proposition

ava(G ) ≤ fv(G ) + 1 for any graph G .

adi(D) ≤ fv(D) + 1 for any digraph D.

Proof.

In a complete arboreal/acyclic coloring, at most one colour class is
disjoint from a feedback vertex set.
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Relations between the Parameters

Theorem (Felsner, Hochstättler, Knauer, S. ’19)

∃ Multi-graphs with bounded ava and unbounded fv.

∃ Simple digraphs with bounded adi and unbounded fv.

For simple graphs, there is f such that fv(G ) ≤ f (ava(G )).

For simple graphs, ava(G ) ∼ maxD adi(D).
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Relations between the Parameters

Theorem (Felsner, Hochstättler, Knauer, S. ’19)

Let G be a non-trivial minor-closed class of simple graphs.

There is f such that for D orientation of G ∈ G:

fv(D) ≤ f (adi(D)).

There is f (k) = O(k2 log k) such that for all G ∈ G:

fv(G ) ≤ f (ava(G )).
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Degeneracy vs. ava

Theorem

There is f such that for all simple graphs G:

deg(G ) ≤ f (ava(G )).
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Degeneracy vs. ava

Theorem

There is f such that for all simple graphs G:

deg(G ) ≤ f (ava(G )).

Theorem (Kühn and Osthus, 2004)

For s ≥ 1 and every graph H there is d(s,H) ≥ 1 such that every
G with δ(G ) ≥ d(s,H) contains Ks,s as a subgraph or an induced
subdivision of H.
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Degeneracy vs. ava

Theorem

There is f such that for all simple graphs G:

deg(G ) ≤ f (ava(G )).

Proof.

If deg(G ) ≥ d(s,Ks,s), then ava(G ) ≥ s.
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

fv(G ) ≤ f (ava(G ))

Proof by contradiction: Assume ∃ sequence G1,G2,G3, . . . such
that fv(Gi )→∞ and ava(Gi ) bounded.

Theorem (Erdős and Pósa ’65)

There is f (k) = O(k log k) such that for all graphs:

cp(G ) ≤ fv(G ) ≤ f (cp(G )).

Therefore: cp(Gi )→∞, and deg(Gi ) ≤ d .
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There is f (k) = O(k log k) such that for all graphs:

cp(G ) ≤ fv(G ) ≤ f (cp(G )).

Therefore: cp(Gi )→∞, and deg(Gi ) ≤ d .

Raphael Steiner Complete Acyclic Colorings



Complete Colorings Graph Operations Upper Bounds Lower Bounds

fv(G ) ≤ f (ava(G ))

Proof by contradiction: Assume ∃ sequence G1,G2,G3, . . . such
that fv(Gi )→∞ and ava(Gi ) bounded.
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

The End.

Thank you.
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

fv(G ) ≤ f (ava(G ))

k: Number of short cycles.

L: Maximum length of short cycle.

d : Upper bound for degeneracy.

N: Number of vertices in short cycles.(
k

2

)
≤ Number of edges in induced subgraph ≤ dN ≤ dL · k
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Multigraphs

ava = 2, fv = n
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Simple digraphs

n = 3, k = 4
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Simple digraphs

adi ≤ k , fv = n
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Complete Colorings Graph Operations Upper Bounds Lower Bounds

Relationship of ava and adi
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Relationship of ava and adi

adi(D) ≤ fv(D) + 1 ≤ fv(G ) + 1 ≤ f (ava(G )) + 1.
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Relationship of ava and adi

max
D

adi(D) ≤ g(ava(G )).
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Relationship of ava and adi

ava(G ) ≤ h(max
D

adi(D)))?
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Relationship of ava and adi
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Relationship of ava and adi

1

2

6
5

4
3
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