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Given a graph G and w : V(G) — Rxq, compute a maximum weight
stable set (MWSS) of G.



Maximum Weight Stable Set

Problem

Given a graph G and w : V(G) — Rx(, compute a maximum weight
stable set (MWSS) of G.

Theorem

For every e > 0, it is NP-hard to approximate maximum stable set
within a factor of n'=—¢.
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max Z w(V) Ty max Z w(v) Ty
veV(Q) _ veV(G)
st. zy,+z, <1 Yuv € E(G) st. Mz<1

x>0 x>0



MWSS can be solved on bipartite graphs in polynomial time.

max Z w(v)x, max Z w(v)x,
veV(G) _ veV(G)
st. x,+x,<1 YweEG) st. Mz<1
>0 x>0

If G is bipartite, then M is a totally unimodular matrix.
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Fix & € N. Integer Linear Programming can be solved in polynomial
time when all subdeterminants of the constraint matrix are in
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Integer Programming

Fix & € N. Integer Linear Programming can be solved in polynomial
time when all subdeterminants of the constraint matrix are in
{—k,... k}.

Theorem (Artmann, Weismantel, Zenklusen °17)

True for k = 2. Bimodular Integer Programming can be solved in
(strongly) polynomial time.

Open for k > 3.
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Odd Cycle Packing Number

M = M(G) edge-vertex incidence matrix of graph G
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max |sub-determinant of M (G)| = 2°P(©)
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MWSS can be solved in polynomial time in graphs without two
vertex-disjoint odd cycles.



Odd Cycle Packing Number

Observation

max |sub-determinant of M (G)| = 2°0°P(&)

Corollary

MWSS can be solved in polynomial time in graphs without two
vertex-disjoint odd cycles.

Fix £ € N. MWSS can be solved in polynomial time in graphs without
k vertex-disjoint odd cycles.



Polynomial Time Approximation Schemes
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For every fixed k € N, MWSS on graphs with OCP(G) < k has a
PTAS.



Polynomial Time Approximation Schemes

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas ’14)

For every fixed k € N, MWSS on graphs with OCP(G) < k has a
PTAS.

Theorem (Tazari ’10)

For every fixed k € N, MWSS and Minimum Vertex Cover on graphs
with OCP(G) < k has a PTAS.



There exists a function f : N> — N such that MWSS on graphs with
OCP(G) < k and Euler genus < g can be solved in n®((%:9)) 4 0%
time.
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Escher Walls

(@) such that G — X is bipartite, then MWSS is easy

lf3small X CV




OCP = 1 Graphs

Theorem (Lovasz)

Let G be an internally 4-connected graph. Then OCP(G) < 1 iff one
of the following holds:
» |G| <5,
» G — {z} is bipartite for some x € V(G),
» G — {e1, e, e3} is bipartite for some 3-cycle {e;,es,e3} C E(G),
» G has an even face embedding in the projective plane.



Parity-consistent Embeddings

Let G be a graph embedded in a surface S. A cycle of G is 1-sided if it
has a neighborhood that is a Mobius strip, and 2-sided if it has a
neighborhood that is a cylinder.
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Parity-consistent Embeddings

The embedding of a graph G in a surface S is parity-consistent if
every odd cycle in G is 1-sided.



Parity-consistent Embeddings

The embedding of a graph G in a surface S is parity-consistent if
every odd cycle in G is 1-sided.

Lemma
If G < S is parity-consistent, then OCP(G) < Euler genus(S).



An Erdos-Pdsa Theorem for 2-sided Odd Cycles

Theorem (CFHJW °19)

LetS be a surface with Euler genus g. ¥ OCP < k graphs G

embedded in'S, 3 set X of f(k, g) nodes that hits all the 2-sided odd
cycles.



An Erdos-Pdsa Theorem for 2-sided Odd Cycles

Theorem (CFHJW ’19)

LetS be a surface with Euler genus g. ¥ OCP < k graphs G
embedded in S, 3 set X of f(k, g) nodes that hits all the 2-sided odd
cycles.

Theorem (Reed °99, Kawarabayashi and Nakamoto °07)

vV OCP < k graphs G embedded in an orientable surface S with Euler
genus g, 3 set X of f(k,g) nodes that G — X is bipartite.



1 ifvesS

» Node space: Ty = .
0 otherwise



1 ifoesS
0 otherwise

1 ifu,vgs
» Slack space: Yuv = { 0 othervf/éise >—<

» Node space: Ty = {



























Minimum Cost Homologous Circulation

min c(e)ye
max Z w ()X, ee%(:G) (€)Ye
t 3?;(2) 1 - s.t. g circulation in G*
o >0 B y homologous to 1
z e zZV(© y=>0

y € ZE©)



Minimum Cost Homologous Circulation

ax Z w(v)z, min Z c(e)ye

e€cE(G)
vev(G) s.t. y circulation in G*

.t. < =
+ ffa ! y homologous to 1
-z V(G y =0
zezZV©) yeZE(G)

where ¢ € R is such that ¢(6(v)) = w(v) for all v € V(G)



Two integer circulations y, 3’ in G* are homologous if y — ¢’ is an
integer combination of facial circulations.
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Minimum Cost Homologous Circulation

Theorem (Chambers, Erickson, Nayyeri ’10)

Given an undirected graph G embedded on an orientable surface of
Euler genus g, a cost function ¢ : E(G) — R, and a circulation

0 : E(G) — R, a min-cost circulation R-homologous to 6 can be
computed in time ¢©9)n3/2.



Minimum Cost Homologous Circulation

Theorem (Chambers, Erickson, Nayyeri ’10)

Given an undirected graph G embedded on an orientable surface of
Euler genus g, a cost function ¢ : E(G) — R, and a circulation

0 : E(G) — R, a min-cost circulation R-homologous to 6 can be
computed in time ¢©9)n3/2.

Theorem (Malni¢ and Mohar ’92)

Suppose G is embedded in a surface S with Euler genus g > 1. If C4,
..., Cy are vertex-disjoint directed cycles in G whose homology
classes are mutually distinct, then { < 6g.
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There exists a function f : N> — N such that MWSS on graphs with
OCP(G) < k and Euler genus < g can be solved in n®U (%:9) 4 n0(*)
time.

Thank you!



