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Introduction

In computer science, we frequently encounter different
kinds of combinatorial objects

Examples:

* permutations
e binary strings
* binary trees

e graphs

* spanning trees

Common tasks:
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counting + random sampling + exhaustive generation
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Exhaustive generation

Goal: generate all objects of a combinatorial class efficiently

[Knuth, The Art of Computer Programming Vol. 4A]

ultimately: each new object in constant time
consecutive objects differ only by “small changes‘ = Gray code

Examples:

binary trees by rotations [Lucas, van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm [Johnson 63], [Trotter 62])

binary strings by bitflips (binary reflected Gray code [Gray 53])

set partitions by element exchanges [Kaye 76]
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Exhaustive generation

many tailormade algorithms, few general approaches
[Avis, Fukuda 92], [Li, Sawada 09], [Ruskey, Sawada, Williams 12]

This work: A general framework for exhaustive generation

Results: all aforementioned algorithms as special cases
+ many new results for other families of objects

Idea: Encode objects as a subset F,, C S,, of permutations of
length n
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attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,
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Algorithm J
attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

+ Example: F, = {1243,1423,4123,4213,2134}
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Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

e |f every permutation from F;, is visited and no ambiguity
arises, we say that Algorithm J generates F,,
(visiting twice is impossible)

e Question: When does Algorithm J generate I, ?
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e given any such pruned tree, a set of permutations F;,, C 5,
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Zigzag languages

we may prune subtrees iff their rootis @

given any such pruned tree, a set of permutations F,, C 5,
in depth 7 is called zigzag language

Examples:
Ee®
e prune nothing: F,, = S, |F,| = n!
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Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F;,, C 5,
in depth 7 is called zigzag language

e Examples: )
L _
e prune nothing: F,, = S, |Fy| = n! |
®
e prune everything possible
F, h: permutkations 1.2 2.1
without peaks
fpS 123 132 312 213 231 32
F| = 2 : 12 21 2

aky aky




Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.



Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S5,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.

Proof: Induction over the depth. [J



Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S5,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.

Proof: Induction over the depth. [J

Remark: The number of zigzag languages is enormous
> 2(%—1)!(%—2) _ 22®(n log n)
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General approach

e Run Algorithm J

-
Set of A f
permutations < '

List = Algo J(F),)

e Directly interpret
Algorithm J under
the bijection

Algo J
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General approach

e Run Algorithm J

( set of A f
permutations < '

List = Algo J(F),)

e Directly interpret
Algorithm J under
the bijection

Algo J

Minimal jumps

> ,Small changes’

4 )
Combinatorial
objects

\_ J
—1 .

> {7 7( List )
> ! (algo))



yInteresting” zigzag languages

Applications of our framework
e pattern-avoiding permutations
 |attice congruences of the weak order on §,,
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Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

o Sn(11,72,...,7) C Sy, set of permutations avoiding 71,..., 7 .

e A patternTis called tame, if the largest symbol is not at
the leftmost or rightmost position.

231®@ 1230

Theorem:
If 71, ..., 7 are all tame patterns, then S,, (71, 7,...,7) is a zigzag
language.



Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e binary trees by rotations
e triangulations by edge flips
e Dyck paths by hill flips
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Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e« binary trees by rotations
e triangulations by edge flips
* Dyck paths by hill flips

él Set partitions by element exchanges
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Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e« binary trees by rotations
e triangulations by edge flips
* Dyck paths by hill flips

él Set partitions by element exchanges
231,132 Binary strings by bitflips (BRGC)



Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

2413,3142

Baxter permutations

Diagonal rectangulations by flips
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Pattern-avoiding permutations

Tame patterns <l> Combinatorial objects

2413 ,3142 Diagonal rectangulations by flips
Baxter permutations

In addition to classical and vincular patterns:
e bivincular patterns [Bousquet-Mélou et al. 10]

e barred patterns [West 90]

* mesh patterns [Brindén, Claesson 11]

e monotone grid classes [Huczynska, Vatter 06]

e geometric grid classes [Albert et al. 13]

e etc.
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e website invented by Frank Ruskey 1995-2003 for generating
combinatorial objects

e UVIC server shut-down since several years

e revived jointly with Aaron Williams and Joe Sawada

e we proudly present the new Combinatorial Object Server:
http://combos.org

e community project (open source, welcome your contributions)


http://combos.org/

Thank you!

tree of
permutations

Gray code for
diagonal
rectangulations

Aaron Torsten Liz
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