§F e, FACULTY
S = OF MATHEMATICS
‘ ‘ha rsity

WARWICK 3

Combinatorial generation
via permutation languages

Torsten Mutze

(joint work with Liz Hartung, Hung P. Hoang, and Aaron Williams)

Introduction

* |n computer science, we frequently encounter different
kinds of combinatorial objects

e Examples: - ~N
. . 1234
permutations 1943
e binary strings 1423

e binary trees .)

e graphs
* spanning trees

Introduction

* |n computer science, we frequently encounter different
kinds of combinatorial objects

e Examples: - N N
e permutations 1234 000
P 1243 001
e binary strings 1423 011

* binary trees « J U

e graphs
* spanning trees

Introduction

* |n computer science, we frequently encounter different
kinds of combinatorial objects

e Examples: - N N
* permutations 1234 000
P 1243 001
e binary strings 1423 011
* binary trees \) L o
e graphs ~ ™
e spanning trees /<\/\ />\
i _ y,

Introduction

* |n computer science, we frequently encounter different

kinds of combinatorial objects

e Examples: 4 N N
e permutations 1234 000
P 1243 001
e binary strings 1423 011
* binary trees « J U
e graphs ~ ™
e spanning trees /<\/\ />\
_ J

Introduction

* |n computer science, we frequently encounter different
kinds of combinatorial objects

e Examples: - N [A
ermutations 1234 000
P 1243 001
binary strings 1423 011
binary trees 9) L y
graphs ~ ™
spanning trees /<\/\ />\
i _ y,

(2

\

o

/

Introduction

In computer science, we frequently encounter different
kinds of combinatorial objects

Examples:

* permutations
e binary strings
* binary trees

e graphs

* spanning trees

Common tasks:

4 N\
1234 000

1243 001
1423 011

~N

J

(2

\

~
/

o

/

counting + random sampling + exhaustive generation

Exhaustive generation

 Goal: generate all objects of a combinatorial class efficiently
[Knuth, The Art of Computer Programming Vol. 4A]

e ultimately: each new object in constant time
e consecutive objects differ only by 'small changes’ 2 Gray code

Exhaustive generation

Goal: generate all objects of a combinatorial class efficiently
[Knuth, The Art of Computer Programming Vol. 4A]
ultimately: each new object in constant time

consecutive objects differ only by “small changes’ = Gray code

Examples:

e binary trees by rotations [Lucas, van Baronaigien, Ruskey 93]

Exhaustive generation

Goal: generate all objects of a combinatorial class efficiently
[Knuth, The Art of Computer Programming Vol. 4A]
ultimately: each new object in constant time

consecutive objects differ only by “small changes’ = Gray code

Examples:

e binary trees by rotations [Lucas, van Baronaigien, Ruskey 93]

e permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm [Johnson 63], [Trotter 62])

Exhaustive generation

Goal: generate all objects of a combinatorial class efficiently
[Knuth, The Art of Computer Programming Vol. 4A]
ultimately: each new object in constant time

consecutive objects differ only by “small changes’ = Gray code

Examples:

e binary trees by rotations [Lucas, van Baronaigien, Ruskey 93]

e permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm [Johnson 63], [Trotter 62])

e binary strings by bitflips (binary reflected Gray code [Gray 53])

Exhaustive generation

Goal: generate all objects of a combinatorial class efficiently

[Knuth, The Art of Computer Programming Vol. 4A]

ultimately: each new object in constant time
consecutive objects differ only by “small changes‘ = Gray code

Examples:

binary trees by rotations [Lucas, van Baronaigien, Ruskey 93]

permutations by adjacent transpositions
(Steinhaus-Johnson-Trotter algorithm [Johnson 63], [Trotter 62])

binary strings by bitflips (binary reflected Gray code [Gray 53])

set partitions by element exchanges [Kaye 76]

Exhaustive generation

 many tailormade algorithms, few general approaches
[Avis, Fukuda 92], [Li, Sawada 09], [Ruskey, Sawada, Williams 12]

Exhaustive generation

 many tailormade algorithms, few general approaches
[Avis, Fukuda 92], [Li, Sawada 09], [Ruskey, Sawada, Williams 12]

* This work: A general framework for exhaustive generation

Exhaustive generation

 many tailormade algorithms, few general approaches
[Avis, Fukuda 92], [Li, Sawada 09], [Ruskey, Sawada, Williams 12]

* This work: A general framework for exhaustive generation

* Results: all aforementioned algorithms as special cases
+ many new results for other families of objects

Exhaustive generation

many tailormade algorithms, few general approaches
[Avis, Fukuda 92], [Li, Sawada 09], [Ruskey, Sawada, Williams 12]

This work: A general framework for exhaustive generation

Results: all aforementioned algorithms as special cases
+ many new results for other families of objects

Idea: Encode objects as a subset F,, C S,, of permutations of
length n

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

r

:
4 51326
413256

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

| :
4 51326

413256

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

| :
4 51326

413256

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

| .
4 51326
413256

right jump

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

| .
4 51326
413256

left jump

Jumps

 Jump := move an entry in the permutation across some
neighboring smaller entries (right or left)

| :
4 51326

413256

Algorithm |

Algorithm J
attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

+ Example: F, = {1243,1423,4123,4213,2134}

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

+ Example: F, = {1243,1423,4123,4213,2134}

1243 0 minimal jumps
1
4213 @

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

+ Example: F, = {1243,1423,4123,4213,2134}

1 1
1243 ° minimal jumps 1243 ° not minimal

4213 (v)

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,
e start with an initial permutation from F;,

in the current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

+ Example: F, = {1243,1423,4123,4213,2134}

1243
1423
47713
2131 @

Algorithm |

Algorithm J
attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

+ Example: F, = {1243,1423,4123,4213,2134}

1243 4213
1423 21346
4123 |
4213 no jump

2134 @ possible

Algorithm |

Algorithm J
attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

+ Example: F, = {1243,1423,4123,4213,2134}

1243 4213 1423

1423 2134 0 °

4123 , direction
4213 no jump ambiguous

2134 @ possible

Algorithm |

Algorithm J

attempts to generate a set of permutations F,, C .S,

e start with an initial permutation from F;,

* inthe current permutation, perform a minimal jump of the
largest possible value, so that a previously unvisited
permutation from F;, is created.

Stop, if no jump is possible or jump direction is ambiguous.

e |f every permutation from F;, is visited and no ambiguity
arises, we say that Algorithm J generates F,,
(visiting twice is impossible)

e Question: When does Algorithm J generate I, ?

Tree of permutations

e root := empty permutation

le
12 21

1%3 1‘3:2 31.2 21.3 2‘331 3%1

Tree of permutations

e root := empty permutation

e given a permutation of length n — 1, its children are
obtained by inserting 17 into every possible position

E®

depth 7 = all 123 132 31.2 21.3 2‘331 3%1

permutations
of length n 0000 0000 0000 0000 0000 0000

Tree of permutations

e root := empty permutation

e given a permutation of length n — 1, its children are
obtained by inserting 17 into every possible position

@ symbol n atleftmost or 2
rightmost position 1e
® clse 12 21
o [|

depth 7 = all 123 132 31.2 21.3 2‘331 3%1

permutations
of length n 0000 0000 0000 0000 0000 0000

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S5,
in depth 7 is called zigzag language

@ symbol n atleftmost or 2
rightmost position 1e
® clse 12 21
o [|

1%3 1‘3:2 31.2 21.3 2‘331 3%1

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F;,, C 5,
in depth 7 is called zigzag language

@ symbol n atleftmost or 2
rightmost position 1e
® clse 12 21
o [|

123 132 312 21.3 2?:1 3%1

LAl 112

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F;,, C 5,
in depth 7 is called zigzag language

@ symbol n atleftmost or 2
rightmost position 1e
® clse 12 21
o [|

1%3 132 31.2 21.3 2‘3:1 3%1

_LALLEE

Zigzag languages

we may prune subtrees iff their rootis @

given any such pruned tree, a set of permutations F,, C 5,
in depth 7 is called zigzag language

Examples:
Ee®
e prune nothing: F,, = S, |F,| = n!
Le
12 21
. o

1%3 1‘3:2 31.2 21.3 2‘331 3%1

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F;,, C 5,
in depth 7 is called zigzag language

e Examples:)
L _
e prune nothing: F,, = S, |Fy| = n! |
®
e prune everything possible
F, h: permutkations 1.2 2.1
without peaks
fpS 123 132 312 213 231 32
F| = 2 : 12 21 2

aky aky

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S5,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.

Proof: Induction over the depth. [J

Zigzag languages

e we may prune subtrees iff their root is @

e given any such pruned tree, a set of permutations F,, C S5,
in depth 7 is called zigzag language

Theorem:

Algorithm J generates any zigzag language, using the identity
permutation for initialization.

Proof: Induction over the depth. [J

Remark: The number of zigzag languages is enormous
> 2(%—1)!(%—2) _ 22®(n log n)

General approach

4) 4)
Set of f Combinatorial
permutations < ' objects

an C Sn) _ J

General approach

* Run Algorithm J
List = Algo J(F},)

4) 4)
Set of f Combinatorial
permutations < ' objects

\Fn C Sn) _ _J

> {1 List)

General approach

e Run Algorithm J

-
Set of A f
permutations < '

List = Algo J(F),)

e Directly interpret
Algorithm J under
the bijection

Algo J

4)
Combinatorial
objects

_ J
—1 .

> {7 7(List)
> f_l(AIgoJ)

General approach

e Run Algorithm J

(set of A f
permutations < '

List = Algo J(F),)

e Directly interpret
Algorithm J under
the bijection

Algo J

Minimal jumps

> ,Small changes’

4)
Combinatorial
objects

_ J
—1 .

> {7 7(List)
> ! (algo))

yInteresting” zigzag languages

Applications of our framework
e pattern-avoiding permutations
 |attice congruences of the weak order on §,,

Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

534216 contains 123

Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

534216 contains 123

a Ll
Aa £

avoids 123

Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

o Sn(11,72,...,7) C Sy, set of permutations avoiding 71,..., 7 .

Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

o Sn(11,72,...,7) C Sy, set of permutations avoiding 71,..., 7 .

e A patternTis called tame, if the largest symbol is not at
the leftmost or rightmost position.

231®@ 1230

Pattern-avoiding permutations

e Def: A permutation 7 contains a pattern 7, if 7T contains
a substring of entries in the same relative order as 7.
Otherwise 7 avoids 7.

o Sn(11,72,...,7) C Sy, set of permutations avoiding 71,..., 7 .

e A patternTis called tame, if the largest symbol is not at
the leftmost or rightmost position.

231®@ 1230

Theorem:
If 71, ..., 7 are all tame patterns, then S,, (71, 7,...,7) is a zigzag
language.

Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e binary trees by rotations
e triangulations by edge flips
e Dyck paths by hill flips

/.\
/ R
‘®
1234 v A N

o 7
’ R
1243 n . FVY N
1423 ‘9 AV N

4123 I

4132 N

Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e« binary trees by rotations
e triangulations by edge flips
* Dyck paths by hill flips

él Set partitions by element exchanges
T " ' 1234 1|2[3/4
posi |.ons mus 1243 1)2/34
be adjacent
1423 1]24|3
4123 14123
4132 1423
1432 1]234

1324

11234

Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

231 Catalan families e« binary trees by rotations
e triangulations by edge flips
* Dyck paths by hill flips

él Set partitions by element exchanges
231,132 Binary strings by bitflips (BRGC)

Pattern-avoiding permutations

Tame patterns <i> Combinatorial objects

2413,3142

Baxter permutations

Diagonal rectangulations by flips

1234 .

1243

1423

4123

4132

1432

Vel ald e

v
1342 .
1324
3124
3142
4312

4321

HMEAEE
4444

v
3421 .
3241
3214
2314
2341

2431

4231
4213
2143

v

2134

Pattern-avoiding permutations

Tame patterns <l> Combinatorial objects

2413 ,3142 Diagonal rectangulations by flips
Baxter permutations

In addition to classical and vincular patterns:
e bivincular patterns [Bousquet-Mélou et al. 10]

e barred patterns [West 90]

* mesh patterns [Brindén, Claesson 11]

e monotone grid classes [Huczynska, Vatter 06]

e geometric grid classes [Albert et al. 13]

e etc.

—r— —r—— ———
WWT _\5’_75\&-,?\:&';:\ _\é’js\xw?c_ =

The (Combinatorial) Object Server

) v
Dhject Derer f HOL €05 | dia] Gu ¢

e website invented by Frank Ruskey 1995-2003 for generating
combinatorial objects

—r— —r—— ———
WWT _\5’_75\&-,?\:&';:\ _\é’js\xw?c_ =

The (Combinatorial) Object Server

) v
Dhject Derer f HOL €05 | dia] Gu ¢

e website invented by Frank Ruskey 1995-2003 for generating
combinatorial objects

e UVIC server shut-down since several years

" F r——, —
e ,.:\:c'?&'pc\ =i ool w e oS PEN— —

The (Combinatorial) Object Server

J v
Dyjeet Deryer T HOT a95 | gu| Que| €
b

e website invented by Frank Ruskey 1995-2003 for generating
combinatorial objects

e UVIC server shut-down since several years
e revived jointly with Aaron Williams and Joe Sawada

e we proudly present the new Combinatorial Object Server:
http://combos.org

http://combos.org/

" F r——, —
e ,.:\:c'?&'pc\ =i ool w e oS PEN— —

The (Combinatorial) Object Server

P i/
Dot Deryer E HOT _40% | | Qu] €
2

e website invented by Frank Ruskey 1995-2003 for generating
combinatorial objects

e UVIC server shut-down since several years

e revived jointly with Aaron Williams and Joe Sawada

e we proudly present the new Combinatorial Object Server:
http://combos.org

e community project (open source, welcome your contributions)

http://combos.org/

Thank you!

tree of
permutations

Gray code for
diagonal
rectangulations

Aaron Torsten Liz

	Combinatorial generation�via permutation languages
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Exhaustive generation
	Jumps
	Jumps
	Jumps
	Jumps
	Jumps
	Jumps
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Algorithm J
	Tree of permutations
	Tree of permutations
	Tree of permutations
	Zigzag languages
	Zigzag languages
	Zigzag languages
	Zigzag languages
	Zigzag languages
	Zigzag languages
	Zigzag languages
	Zigzag languages
	General approach
	General approach
	General approach
	General approach
	„Interesting“ zigzag languages
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Pattern-avoiding permutations
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Thank you!

