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Università degli Studi della Basilicata – Potenza

August 12-14 2019
Ghent Graph Theory Workshop – Ghent (Belgium)



2–factors in regular graphs

A 2–factor of G is a 2–regular spanning subgraph (i.e. it is a
union of disjoint circuits that span G ).



2–factors in regular graphs

A 2–factor of G is a 2–regular spanning subgraph (i.e. it is a
union of disjoint circuits that span G ).

Problem (1)

Characterize regular graphs that possess only hamiltonian 2–factors
i.e. 2–factor hamiltonian graphs.

Problem (2)

Characterize regular graphs with particular conditions on their
2–factors (e.g. (pseudo) 2–factor isomorphic graphs).
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Definition

A graph with a 2–factor is said to be 2–factor hamiltonian if all its
2–factors are Hamilton circuits.

Examples

K4 K5 K3,3 Heawood
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The resulting graphs are called 3–cut reductions or constituents.
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Constructions

Proposition (Funk, Jackson, D.L., Sheehan - JCTB 2003)

If a bipartite graph G can be represented as a star product
G = (G1, y) ∗ (G2, x), then G is 2–factor hamiltonian if and only if
G1 and G2 are 2–factor hamiltonian.

K4 ∗ K4 ⇒ Proposition does not hold in the non–bipartite
case !

(Funk, Jackson, D.L., Sheehan - JCTB 2003): Construction
of an infinite family of 2–factor hamiltonian cubic bipartite
graphs by taking iterated star products of K3,3 and H0.
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Conjecture (Sheehan)

There are no k–regular 2–factor hamiltonian bipartite graphs for
k > 3.



Existence results

Conjecture (Sheehan)

There are no k–regular 2–factor hamiltonian bipartite graphs for
k > 3.

Theorem (Funk, D.L., Jackson, Sheehan - J.Combin.Th.B
2003)

Let G be a 2–factor hamiltonian k–regular bipartite graph. Then
k ≤ 3.
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Characterization: 2–factor hamiltonian

Conjecture (Funk, Jackson, Labbate, Sheehan - JCTB 2003)

Let G be a 2–factor hamiltonian k-regular bipartite graph. Then
either k = 2 and G is a circuit or k = 3 and G can be obtained
from K3,3 and H0 by repeated star products.

K3,3 Heawood
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Characterization: minimally 1–factorable graphs

minimal 1–factorable k–regular bipartite graph: every 1–factor
lies in precisely one 1–factorization.

Examples

Heawood and K3,3 are minimally 1–factorable

Q3 is not minimally 1–factorable

(Funk, D.L. - Discrete Math. 2000): Let G be a minimally
1–factorable k–regular bipartite graph. Then k ≤ 3.
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Theorem (D.L. - Discrete Math. 2002)

A k–regular bipartite graph G of girth 4 is minimally 1–factorable
if and only if k = 2 and G is a circuit or k = 3 and G can be
obtained from K3,3 by repeated star products.
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Characterization: m1f and 2–factor hamiltonian

Theorem (D.L. - Discrete Math. 2002)

A k–regular bipartite graph G of girth 4 is minimally 1–factorable
if and only if k = 2 and G is a circuit or k = 3 and G can be
obtained from K3,3 by repeated star products.

(Funk, Jackson, Labbate, Sheehan - JCTB 2003):
Let G be a cubic bipartite graph. Then G is minimally
1–factorable if and only if G is 2–factor hamiltonian.

Remark

A smallest counterexample to our Conjecture is cubic and cyclically
4-edge connected i.e. its 3–cut reductions have no non–trivial
3–edge cuts (D.L. - Discrete Math. 2001), and that it has girth at
least six (D.L. - Discrete Math 2002).
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Further results and conjectures

Diwan (2003) has shown that K4 is the only 3–regular 2–factor
hamiltonian planar graphs.

Faudree, Gould, Jacobson; (2004): Determine the maximum
number of edges in 2–factor hamiltonian (bipartite) graphs.
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Problem (2): Characterize regular graphs with particular

conditions on their 2–factors

Definition

A graph with a 2–factor is said to be 2-factor isomorphic if all its
2-factors are isomorphic.

Examples

Every 2–factor hamiltonian graphs and

Petersen
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Pseudo 2–factor isomorphic graphs

Definition

Let G be a graph which contains a 2–factor. Then G is said to be
pseudo 2–factor isomorphic if all its 2–factors have the same parity
of number of circuits.

Examples

Every 2–factor isomorphic graphs and the Pappus graph.

(18) ⇒ odd
(6, 6, 6) ⇒ odd
and (18) 6∼= (6, 6, 6)
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Existence results

Theorem (Aldred, Funk, Jackson, DL, Sheehan - JCTB 2004)

Let G be a k–regular 2–factor isomorphic bipartite graph. Then
k ∈ {2, 3}.

Idea: Use Thomasson’s lollipop technique.

Theorem (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be a k–regular pseudo 2–factor isomorphic bipartite graph.
Then k ≤ 3.

Idea: Use Asratian and Mirumyan’s 1–factorization transformations.

Theorem (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be a pseudo 2-factor-isomorphic cubic bipartite graph. Then
G is non-planar.
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Characterization: pseudo 2–factor isomorphic
Star products preserve also the cubic bipartite pseudo 2–factor
isomorphic graphs;

(Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008): Construct
infinite classes of cubic bipartite pseudo 2–factor isomorphic
graphs starting from K3,3, H0 and P0.

Conjecture (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be a 3–edge–connected cubic bipartite graph. Then G is
pseudo 2–factor isomorphic if and only if G can be obtained by
repeated star product of K3,3, H0, P0.

K3,3 Heawood Pappus
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Characterization: pseudo 2–factor isomorphic

Conj. holds if and only if Conjectures below are both valid.

Conjecture (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be an essentially 4–edge–connected pseudo 2–factor
isomorphic cubic bipartite graph. Then G ∈ {K3,3,H0,P0}.

Conjecture (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be a 3-edge-connected pseudo 2–factor isomorphic cubic
bipartite graph and suppose that G = G1 ∗ G2. Then G1 and G2

are both pseudo 2–factor isomorphic.

Theorem (Abreu, Diwan, Jackson, DL, Sheehan - JCTB 2008)

Let G be an essentially 4–edge–connected pseudo 2–factor
isomorphic cubic bipartite graph. Suppose G contains a 4-circuit,
then G = K3,3.
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Counterexample

Remark

The counterexample G has order 30 and is not 2–factor
hamiltonian.

G has cyclic edge–connectivity 6, |Aut(G)|= 144, is not
vertex–transitive.

G has 312 2–factors and the cycle sizes of its 2–factors are
(6, 6, 18), (6, 10, 14), (10, 10, 10) and (30).



Existence: Non–bipartite graphs

Theorem (Abreu, Aldred, Funk, Jackson, DL, Sheehan - JCTB 2004/2009)

Let D be a digraph with n vertices and X be a directed 2–factor of
D. Suppose that either

(a) d+(v) ≥ ⌊log2 n⌋ for all v ∈ V (D), or

(b) d+(v) = d−(v) ≥ 4 for all v ∈ V (D)

Then D has a directed 2–factor Y 6∼= X.



Existence: Non–bipartite graphs

Theorem (Abreu, Aldred, Funk, Jackson, DL, Sheehan - JCTB 2004/2009)

Let D be a digraph with n vertices and X be a directed 2–factor of
D. Suppose that either

(a) d+(v) ≥ ⌊log2 n⌋ for all v ∈ V (D), or

(b) d+(v) = d−(v) ≥ 4 for all v ∈ V (D)

Then D has a directed 2–factor Y 6∼= X.

Theorem (Abreu, Aldred, Funk, Jackson, DL, Sheehan - JCTB 2004/2009)

Let G be a graph with n vertices and X be a 2–factor of G .
Suppose that either
(a) d(v) ≥ 2(⌊log2 n⌋+ 2) for all v ∈ V (G ), or
(b) G is a 2k–regular graph for some k ≥ 4.
Then G has a 2–factor Y with Y 6∼= X.
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Existence: Non–bipartite pseudo 2-factor isomorphic

regular graphs
Let PU(k) (resp. DPU(k)) be the class of k–regular pseudo
2–factor isomorphic (resp. directed) graphs.

Theorem (Abreu, DL, Sheehan - 2010)

Let D be a digraph with n vertices and X be a directed 2–factor of
D. Suppose that either

(a) d+(v) ≥ ⌊log2 n⌋ for all v ∈ V (D), or

(b) d+(v) = d−(v) ≥ 4 for all v ∈ V (D)

Then D has a directed 2–factor Y with different parity of number
of circuits from X .

Corollary (Abreu, DL, Sheehan - 2009)

DPU(k) = ∅ for k ≥ 4;

If D ∈ DPU then D contains a vertex of out–degree at most
⌊log2 n⌋ − 1.
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Suppose that either
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Existence: Non–bipartite pseudo 2-factor isomorphic

regular graphs

Theorem (Abreu, DL, Sheehan - 2010)

Let G be a graph with n vertices and X be a 2–factor of G .
Suppose that either

(a) d(v) ≥ ⌊log2 n⌋ for all v ∈ V (G ), or

(b) G is a 2k–regular graph for some k ≥ 4.

Then G has a 2–factor Y with different parity of number of
circuits from X .

Corollary (Abreu, DL, Sheehan - 2009)

If G ∈ PU then G contains a vertex of degree at most
2⌊log2 n⌋+ 3.

PU(2k) = ∅ for k ≥ 4.
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Open problems

Question

Do there exist 2–factor isomorphic bipartite graphs of arbitrarily
large minimum degree?

Question

Do there exist 2–factor isomorphic regular graphs of arbitrarily
large degree?

Conjecture (Abreu, Aldred, Funk, Jackson, D.L., Sheehan; JCTB 2004)

The graph K5 is the only 2–factor hamiltonian 4–regular
non–bipartite graph.
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Open problems

Question

Is PU(2k + 1) = ∅ for k ≥ 2? In particular, are PU(7) and PU(5)
empty?

Question

Is PU(6) = ∅?

Question

Is K5 the only 4–edge connected graph in PU(4)?
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Characterization: non–bipartite connected k–regular

2–factor isomorphic graphs, k ≥ 3

This class is very small for k ≥ 4:

In the bipartite case we have already seen that this class is
empty for k ≥ 4 (Aldred, Jackson, D.L., Sheehan; JCTB
2004).

Conjecture The graph K5 is the only 2–factor hamiltonian
4–regular non–bipartite graph. (Abreu, Aldred, Funk, Jackson,
D.L., Sheehan; JCTB 2004).

For k = 3 the class of non bipartite k–regular 2–factor
hamiltonian graphs is quite rich of examples:



Constructions in the class of non bipartite cubic 2–factor
hamiltonian graphs

A(k), k ≥ 3 is the graph with

V = {hi , ui , vi ,wi : i = 1, 2, . . . , k}
E = {hiui , hivi , hiwi , uiui+1, vivi+1,wiwi+1 : i = 1, 2, . . . , k}
(where the subscript addition is modulo k).

A(k) is cubic and non–bipartite if k is even;

A(k), k ≥ 6 is cyclically 6–edge–connected;

A(k), 3 ≤ k ≤ 5 is cyclically k–edge connected.
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Theorem

A(k),B(K ), for k odd and k ≥ 3, provide infinite families of
3–connected cubic 2-factor hamiltonian non–bipartite graphs.
These graphs are also maximal.

Not all graphs in this class are maximal.

H0 ∗ K4 ∈ HU(3) K4 ∗ K3,3 ∈ HU(3)
(H0 ∗ K4) + e ∈ HU(3) (K4 ∗ K3,3) + e ∈ HU(3)
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Construction in the class of non bipartite cubic 2–factor
hamiltonian graphs

Theorem

A(k),B(K ), for k odd and k ≥ 3, provide infinite families of
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infinite family of connectivity 2 cubic bipartite 2-factor
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Open problems

Conjecture (Aldred, Funk, DL, Jackson, Sheehan; JCTB 2004)

There exists an integer k such that there is no cyclically k–edge
connected cubic non bipartite 2–factor isomorphic graph.

Question

Is there any chance of (partially) characterize these classes of
non-bipartite k–regular 2–factor isomorphic/hamiltonian graphs?
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