Minimum leaf number of cubic graphs

Gábor Wiener

Department of Computer Science and Information Theory Budapest University of Technology and Economics

Ghent Graph Theory Workshop, 2017.08.17.

GGTW 2 17

Joint work with Jan Goedgebeur, Kenta Ozeki, and Nico Van Cleemput

ヘロン 人間 とくほ とくほ とう

ъ

Hamiltonicity of planar cubic graphs

Gábor Wiener Minimum leaf number of cubic graphs

문에 비문에 다

____>

æ

Hamiltonicity of planar cubic graphs

Conjecture (Tait, 1880)

All 3-connected planar cubic graphs are hamiltonian.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Hamiltonicity of planar cubic graphs

Conjecture (Tait, 1880)

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

- Found by Barnette, Bosák, Lederberg (1966).
- Minimality proved by Holton and McKay (1986).

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

- Found by Barnette, Bosák, Lederberg (1966).
- Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)

All 3-connected bipartite planar cubic graphs are hamiltonian.

ヘロト 人間 ト ヘヨト ヘヨト

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

- Found by Barnette, Bosák, Lederberg (1966).
- Minimality proved by Holton and McKay (1986).

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

- Found by Barnette, Bosák, Lederberg (1966).
- Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)

All 3-connected cubic plane graphs with faces of size at most 6 are hamiltonian.

くロト (過) (目) (日)

All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.

- Found by Barnette, Bosák, Lederberg (1966).
- Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)

All 3-connected cubic plane graphs with faces of size at most 6 are hamiltonian.

Proved by F. Kardoš (2014).

ヘロト 人間 ト ヘヨト ヘヨト

Hamiltonicity of cubic graphs

Gábor Wiener Minimum leaf number of cubic graphs

ヨトメヨト

æ

< 🗇 🕨 🔸

All 3-connected bipartite cubic graphs are hamiltonian.

ヘロト ヘアト ヘビト ヘビト

ъ

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

(日本) (日本) (日本)

ъ

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.

- Found by Kelmans (1986).
- Order of smallest counterexample is between 32 and 50.

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.

- Found by Kelmans (1986).
- Order of smallest counterexample is between 32 and 50.

Connectivity 2:

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.

- Found by Kelmans (1986).
- Order of smallest counterexample is between 32 and 50.

Connectivity 2: several smallest nonhamiltonian examples (planar/non-planar, bipartite/non-bipartite, graph/multigraph) by Asano, Exoo, Harary, Saito (1981) and Asano, Saito (1981).

ヘロト ヘアト ヘビト ヘビト

All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.

- Found by Kelmans (1986).
- Order of smallest counterexample is between 32 and 50.

Connectivity 2: several smallest nonhamiltonian examples (planar/non-planar, bipartite/non-bipartite, graph/multigraph) by Asano, Exoo, Harary, Saito (1981) and Asano, Saito (1981).

E.g. the (unique) smallest 2-connected nonhamiltonian cubic planar bipartite graph has order 26.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

All graphs are undirected, connected, and simple.

프 🖌 🛪 프 🛌

ъ

All graphs are undirected, connected, and simple.

Definition

The *path covering number* $\mu(G)$ is the minimum number of vertex disjoint paths that cover the vertices of *G*.

All graphs are undirected, connected, and simple.

Definition

The *path covering number* $\mu(G)$ is the minimum number of vertex disjoint paths that cover the vertices of *G*.

Definition

The minimum leaf number ml(G) is the minimum number of leaves (vertices of degree 1) of the spanning trees of G.

ヘロト 人間 ト ヘヨト ヘヨト

All graphs are undirected, connected, and simple.

Definition

The *path covering number* $\mu(G)$ is the minimum number of vertex disjoint paths that cover the vertices of *G*.

Definition

The minimum leaf number ml(G) is the minimum number of leaves (vertices of degree 1) of the spanning trees of G.

Proposition

 $\mu(G) + 1 \leq \mathrm{ml}(G) \leq 2\mu(G).$

くロト (過) (目) (日)

Path covering number

Gábor Wiener Minimum leaf number of cubic graphs

ヘロン 人間 とくほ とくほ とう

æ

Path covering number

Theorem (Reed, 1996)

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

ヘロン 人間 とくほ とくほ とう

3

Path covering number

Theorem (Reed, 1996)

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

The bound is essentially best possible.

ヘロト ヘアト ヘビト ヘビト

ъ

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If *G* is a 2-connected cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{10} \rceil$.

ヘロト 人間 ト ヘヨト ヘヨト

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If *G* is a 2-connected cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{10} \rceil$.

Confirmed by G. Yu?

ヘロト ヘアト ヘビト ヘビト

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If *G* is a 2-connected cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{10} \rceil$.

Confirmed by G. Yu?

2-connected examples with $\mu(G) = \frac{n}{20}$ (Reed, 1996)

ヘロン 人間 とくほ とくほ とう

If *G* is a cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{9} \rceil$.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If *G* is a 2-connected cubic graph of order *n*, then $\mu(G) \leq \lceil \frac{n}{10} \rceil$.

Confirmed by G. Yu?

- 2-connected examples with $\mu(G) = \frac{n}{20}$ (Reed, 1996)
- 2-connected examples with $\mu(G) = \frac{n}{14}$ (G.-O.-V.-W., 2016)

ヘロン 人間 とくほ とくほ とう

Gábor Wiener Minimum leaf number of cubic graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem (Zoeram-Yaqubi, 2015)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{2n}{9} + \frac{4}{9}$.

イロト イポト イヨト イヨト 三日

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then $ml(G) \leq \frac{2n}{9} + \frac{4}{9}$.

Conjecture (Zoeram-Yaqubi, 2015)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

イロト イポト イヨト イヨト 三日

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then $ml(G) \leq \frac{2n}{9} + \frac{4}{9}$.

Conjecture (Zoeram-Yaqubi, 2015)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

Examples with $ml(G) = \frac{n}{6} + \frac{1}{3}$ (Zoeram-Yaqubi, 2015)

イロン 不良 とくほう 不良 とうほ

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then $ml(G) \leq \frac{2n}{9} + \frac{4}{9}$.

Conjecture (Zoeram-Yaqubi, 2015)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

Examples with $ml(G) = \frac{n}{6} + \frac{1}{3}$ (Zoeram-Yaqubi, 2015)

Theorem (Salamon-W., 2008)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{4}{3}$.

イロト 不得 とくほ とくほ とうほ

Gábor Wiener Minimum leaf number of cubic graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If *G* is a 2-connected cubic multigraph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{2}{3}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If G is a 2-connected cubic multigraph of order n, then $ml(G) \leq \frac{n}{6} + \frac{2}{3}$.

Proposition

If *G* is a cubic multigraph of order *n*, then $ml(G) \leq \frac{n}{4} + \frac{1}{2}$.

ヘロト ヘアト ヘビト ヘビト

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If G is a 2-connected cubic multigraph of order n, then $ml(G) \leq \frac{n}{6} + \frac{2}{3}$.

Proposition

If G is a cubic multigraph of order n, then $ml(G) \leq \frac{n}{4} + \frac{1}{2}$.

Examples with $ml(G) = \frac{n}{4} + \frac{1}{2}$.

ヘロン 人間 とくほ とくほ とう

Main results

Gábor Wiener Minimum leaf number of cubic graphs

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Theorem (G.-O.-V.-W., 2016)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

Gábor Wiener Minimum leaf number of cubic graphs

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Theorem (G.-O.-V.-W., 2016)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

Theorem (G.-O.-V.-W., 2016)

If *G* is a 2-connected cubic graph of order *n*, then $ml(G) \leq \frac{25n}{153} \approx \frac{n}{6.12}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem (G.-O.-V.-W., 2016)

If *G* is a cubic graph of order *n*, then $ml(G) \leq \frac{n}{6} + \frac{1}{3}$.

Theorem (G.-O.-V.-W., 2016)

If *G* is a 2-connected cubic graph of order *n*, then $ml(G) \leq \frac{25n}{153} \approx \frac{n}{6.12}$.

Theorem (G.-O.-V.-W., 2016)

If *G* is a 2-connected cubic graph of order *n*, then $ml(G) \leq \frac{19n}{117} \approx \frac{n}{6.157}$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Gábor Wiener Minimum leaf number of cubic graphs

ヘロン 人間 とくほ とくほ とう

æ

Conjecture

If G is a 2-connected cubic graph of order n, then $ml(G) \leq \lceil \frac{n}{10} \rceil$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Conjecture

If *G* is a 2-connected cubic graph of order *n*, then $ml(G) \leq \lceil \frac{n}{10} \rceil$.

Conjecture

If *G* is a 3-connected cubic graph of order *n*, then $ml(G) \leq \lceil \frac{n}{16} + \frac{1}{2} \rceil$.

ヘロト 人間 ト ヘヨト ヘヨト

Conjecture

If *G* is a 2-connected cubic graph of order *n*, then $ml(G) \leq \lceil \frac{n}{10} \rceil$.

Conjecture

If *G* is a 3-connected cubic graph of order *n*, then $ml(G) \leq \lceil \frac{n}{16} + \frac{1}{2} \rceil$.

Conjecture

If *G* is a (2-connected) bipartite cubic graph of order *n*, then $ml(G) \leq \lceil \frac{n}{20} \rceil + 1$.

ヘロト 人間 ト ヘヨト ヘヨト

Gábor Wiener Minimum leaf number of cubic graphs

ヘロン 人間 とくほとく ほとう

æ

No connectivity requirement \longrightarrow same as the non-planar case.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

No connectivity requirement \longrightarrow same as the non-planar case.

Conjecture

If *G* is a 2-connected cubic planar graph of order *n*, then $ml(G) \leq \lceil \frac{n}{14} \rceil + 1$.

ヘロン 人間 とくほ とくほ とう

ъ

No connectivity requirement \longrightarrow same as the non-planar case.

Conjecture

If *G* is a 2-connected cubic planar graph of order *n*, then $ml(G) \leq \lceil \frac{n}{14} \rceil + 1$.

Question

If *G* is a 3-connected cubic planar graph of order *n*, then $ml(G) \leq \lceil \frac{n}{72} + \frac{1}{2} \rceil$?

ヘロン 人間 とくほ とくほ とう

Thank you!

ヘロン 人間 とくほど 人間と