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Hamiltonicity of planar cubic graphs

Conjecture (Tait, 1880)
All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.
Found by Barnette, Bosák, Lederberg (1966).
Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)
All 3-connected bipartite planar cubic graphs are hamiltonian.
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Hamiltonicity of planar cubic graphs

Conjecture (Tait, 1880)
All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.
Found by Barnette, Bosák, Lederberg (1966).
Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)
All 3-connected cubic plane graphs with faces of size at most 6
are hamiltonian.
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Hamiltonicity of planar cubic graphs

Conjecture (Tait, 1880)
All 3-connected planar cubic graphs are hamiltonian.

Disproved by Tutte (1946), counterexample of order 46.

Smallest counterexample: order 38.
Found by Barnette, Bosák, Lederberg (1966).
Minimality proved by Holton and McKay (1986).

Conjecture (Barnette, 1969)
All 3-connected cubic plane graphs with faces of size at most 6
are hamiltonian.

Proved by F. Kardoš (2014).
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All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.
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Hamiltonicity of cubic graphs

Conjecture (Tutte, 1971)
All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.
Found by Kelmans (1986).
Order of smallest counterexample is between 32 and 50.

Connectivity 2:
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Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.
Found by Kelmans (1986).
Order of smallest counterexample is between 32 and 50.

Connectivity 2: several smallest nonhamiltonian examples
(planar/non-planar, bipartite/non-bipartite, graph/multigraph) by
Asano, Exoo, Harary, Saito (1981) and Asano, Saito (1981).

Gábor Wiener Minimum leaf number of cubic graphs



Hamiltonicity of cubic graphs

Conjecture (Tutte, 1971)
All 3-connected bipartite cubic graphs are hamiltonian.

Disproved by Horton (1976), counterexample of order 96.

Smallest known counterexamples: order 50.
Found by Kelmans (1986).
Order of smallest counterexample is between 32 and 50.

Connectivity 2: several smallest nonhamiltonian examples
(planar/non-planar, bipartite/non-bipartite, graph/multigraph) by
Asano, Exoo, Harary, Saito (1981) and Asano, Saito (1981).

E.g. the (unique) smallest 2-connected nonhamiltonian cubic
planar bipartite graph has order 26.
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Generalizations of traceability

All graphs are undirected, connected, and simple.

Definition
The path covering number µ(G) is the minimum number of
vertex disjoint paths that cover the vertices of G.

Definition
The minimum leaf number ml(G) is the minimum number of
leaves (vertices of degree 1) of the spanning trees of G.

Proposition

µ(G) + 1 ≤ ml(G) ≤ 2µ(G).
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Path covering number

Theorem (Reed, 1996)

If G is a cubic graph of order n, then µ(G) ≤ dn
9e.
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Path covering number

Theorem (Reed, 1996)

If G is a cubic graph of order n, then µ(G) ≤ dn
9e.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If G is a 2-connected cubic graph of order n, then µ(G) ≤ d n
10e.

Confirmed by G. Yu?

2-connected examples with µ(G) = n
20 (Reed, 1996)
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Path covering number

Theorem (Reed, 1996)

If G is a cubic graph of order n, then µ(G) ≤ dn
9e.

The bound is essentially best possible.

Conjecture (Reed, 1996)

If G is a 2-connected cubic graph of order n, then µ(G) ≤ d n
10e.

Confirmed by G. Yu?

2-connected examples with µ(G) = n
20 (Reed, 1996)

2-connected examples with µ(G) = n
14 (G.-O.-V.-W., 2016)
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Minimum leaf number

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then ml(G) ≤ 2n
9 + 4

9 .
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Minimum leaf number

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then ml(G) ≤ 2n
9 + 4

9 .

Conjecture (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 1

3 .
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Minimum leaf number

Theorem (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then ml(G) ≤ 2n
9 + 4

9 .

Conjecture (Zoeram-Yaqubi, 2015)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 1

3 .

Examples with ml(G) = n
6 + 1

3 (Zoeram-Yaqubi, 2015)

Theorem (Salamon-W., 2008)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 4

3 .
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Minimum leaf number

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If G is a 2-connected cubic multigraph of order n, then
ml(G) ≤ n

6 + 2
3 .
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Minimum leaf number

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If G is a 2-connected cubic multigraph of order n, then
ml(G) ≤ n

6 + 2
3 .

Proposition

If G is a cubic multigraph of order n, then ml(G) ≤ n
4 + 1

2 .
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Minimum leaf number

Theorem (Boyd-Sitters-van der Ster-Stougie, 2014)

If G is a 2-connected cubic multigraph of order n, then
ml(G) ≤ n

6 + 2
3 .

Proposition

If G is a cubic multigraph of order n, then ml(G) ≤ n
4 + 1

2 .

Examples with ml(G) = n
4 + 1

2 .
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Main results

Theorem (G.-O.-V.-W., 2016)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 1

3 .
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Main results

Theorem (G.-O.-V.-W., 2016)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 1

3 .

Theorem (G.-O.-V.-W., 2016)
If G is a 2-connected cubic graph of order n, then
ml(G) ≤ 25n

153 ≈
n

6.12 .
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Main results

Theorem (G.-O.-V.-W., 2016)

If G is a cubic graph of order n, then ml(G) ≤ n
6 + 1

3 .

Theorem (G.-O.-V.-W., 2016)
If G is a 2-connected cubic graph of order n, then
ml(G) ≤ 25n

153 ≈
n

6.12 .

Theorem (G.-O.-V.-W., 2016)
If G is a 2-connected cubic graph of order n, then
ml(G) ≤ 19n

117 ≈
n

6.157 .
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Conjectures – higher connectivity

Conjecture

If G is a 2-connected cubic graph of order n, then ml(G) ≤ d n
10e.
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Conjectures – higher connectivity

Conjecture

If G is a 2-connected cubic graph of order n, then ml(G) ≤ d n
10e.

Conjecture
If G is a 3-connected cubic graph of order n, then
ml(G) ≤ d n

16 + 1
2e.
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Conjectures – higher connectivity

Conjecture

If G is a 2-connected cubic graph of order n, then ml(G) ≤ d n
10e.

Conjecture
If G is a 3-connected cubic graph of order n, then
ml(G) ≤ d n

16 + 1
2e.

Conjecture
If G is a (2-connected) bipartite cubic graph of order n, then
ml(G) ≤ d n

20e+ 1.
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Conjectures – planar case

No connectivity requirement −→ same as the non-planar case.
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Conjectures – planar case

No connectivity requirement −→ same as the non-planar case.

Conjecture
If G is a 2-connected cubic planar graph of order n, then
ml(G) ≤ d n

14e+ 1.
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Conjectures – planar case

No connectivity requirement −→ same as the non-planar case.

Conjecture
If G is a 2-connected cubic planar graph of order n, then
ml(G) ≤ d n

14e+ 1.

Question
If G is a 3-connected cubic planar graph of order n, then
ml(G) ≤ d n

72 + 1
2e?
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Thank you!
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