Data Reduction and Combinatorics of the 3-Colorability Problem

> Oliver Schaudt RWTH Aachen University

with Maria Chudnovsky, Jan Goedgebeur, and Mingxian Zhong

k-Colorability

r vertices

▶ assume that *G* can be made *nice* by removing *r* vertices

-
- assume that G can be made nice by removing r vertices
- a kernelization is a polynomial time algorithm that computes an equivalent instance G' of order f(r)

Problem

What is a *nice* graph property, meaning it allows for such a kernelization?

Problem

What is a *nice* graph property, meaning it allows for such a kernelization?

Answer

Every graph class in which we can solve the **list k-colorability problem** in polynomial time: every vertex is equipped with a list $L(v) \subseteq \{1, ..., k\}$ of admissible colors.

Problem

What is a *nice* graph property, meaning it allows for such a kernelization?

Answer

Every graph class in which we can solve the **list k-colorability problem** in polynomial time: every vertex is equipped with a list $L(v) \subseteq \{1, ..., k\}$ of admissible colors.

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14) The list 3-colorability problem can be solved in polynomial time for P_7 -free graphs.

r vertices

r vertices

Problem

When is there a **polynomial kernelization**, meaning f(r) is of order $r^{O(1)}$?

▶ let G be a graph and let $L(v) \subseteq \{1, ..., k\}$ for every vertex v

▶ let G be a graph and let $L(v) \subseteq \{1, ..., k\}$ for every vertex v

we call (G, L) a k-obstruction if (a) there is no coloring for (G, L), and (b) there is a coloring if we remove any vertex from G

Theorem (Jansen & Kratsch 2013)

Let \mathcal{P} be a graph property closed under deleting vertices. Assume there are only finitely many k-obstructions with property \mathcal{P} .

Theorem (Jansen & Kratsch 2013)

Let \mathcal{P} be a graph property closed under deleting vertices. Assume there are only finitely many k-obstructions with property \mathcal{P} . There is a polynomial kernel of order $r^{O(1)}$ for the k-colorability problem on the graphs that have property \mathcal{P} after removing r vertices.

Theorem (Jansen & Kratsch 2013)

Let \mathcal{P} be a graph property closed under deleting vertices. Assume there are only finitely many k-obstructions with property \mathcal{P} . There is a polynomial kernel of order $r^{O(1)}$ for the k-colorability problem on the graphs that have property \mathcal{P} after removing r vertices.

Theorem (Jansen & Kratsch 2013) There are only finitely many P_4 -free k-obstructions, for all k.

Theorem (Jansen & Kratsch 2013)

Let \mathcal{P} be a graph property closed under deleting vertices. Assume there are only finitely many k-obstructions with property \mathcal{P} . There is a polynomial kernel of order $r^{O(1)}$ for the k-colorability problem on the graphs that have property \mathcal{P} after removing r vertices.

Theorem (Jansen & Kratsch 2013)

There are only finitely many P_4 -free k-obstructions, for all k.

If a property applies to all paths, there is no such polynomial kernelization.

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) Let H be a connected graph. The following two assertions are equivalent.

- The 3-colorability problem admits a polynomial kernel of order r^{O(1)} on the graphs that are H-free after removing r vertices.
- H is a path on at most six vertices.

We assume that $NP \not\subseteq coNP/poly$.

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) Let H be a connected graph. The following two assertions are equivalent.

- The 3-colorability problem admits a polynomial kernel of order r^{O(1)} on the graphs that are H-free after removing r vertices.
- H is a path on at most six vertices.

We assume that NP $\not\subseteq$ coNP/poly.

Open Problem

Characterize the existence of a polynomial kernel for arbitrary graph properties closed under vertex deletion.

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) There are only finitely many P_6 -free 3-obstructions.

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) There are only finitely many P_6 -free 3-obstructions.

You cannot do better than P_6 .

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) There are only finitely many P_6 -free 3-obstructions.

You cannot do better than P_6 .

• we do know these obstructions have at most $2^{2^{104}}$ vertices

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) There are only finitely many P_6 -free 3-obstructions.

You cannot do better than P_6 .

we do know these obstructions have at most 2²¹⁰⁴ vertices
 gives a kernel of order r^{3·22¹⁰⁴}

Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016) There are only finitely many P_6 -free 3-obstructions.

You cannot do better than P_6 .

- ▶ we do know these obstructions have at most 2²¹⁰⁴ vertices
- gives a kernel of order $r^{3 \cdot 2^{2^{104}}}$
- there are 1 441 407 obstructions on at most 9 vertices

• pick a vertex v in G

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

- pick a vertex v in G
- if we give v a feasible color, this coloring propagates along a path until a contradiction appears:

doing this for both colors on v's list, we see that G is the union of two paths (not disjoint) starting in v

 G is the union of two paths (not disjoint) starting in a common vertex

 G is the union of two paths (not disjoint) starting in a common vertex

Easy case: lists have size at most two

 G is the union of two paths (not disjoint) starting in a common vertex

 using a computer search, we can prove that both paths have bounded length

Easy case: lists have size at most two

 G is the union of two paths (not disjoint) starting in a common vertex

- using a computer search, we can prove that both paths have bounded length
- thus the number of such obstructions is finite

Easy case: lists have size at most two

 G is the union of two paths (not disjoint) starting in a common vertex

- using a computer search, we can prove that both paths have bounded length
- thus the number of such obstructions is finite

Thanks!

▶ our P₆-free obstruction has a connected dominating set inducing either a P₄ or a P₄-free graph

▶ our P₆-free obstruction has a connected dominating set inducing either a P₄ or a P₄-free graph

▶ our P₆-free obstruction has a connected dominating set inducing either a P₄ or a P₄-free graph

• in the first case we can win by guessing the coloring of the P_4

• assume there is a dominating P_4

• assume there is a dominating P_4

► We guess its coloring and then reduce the lists of all other vertices. Call the new list system L'.

assume there is a dominating P₄

We guess its coloring and then reduce the lists of all other vertices. Call the new list system L'.

• assume there is a dominating P_4

- ► We guess its coloring and then reduce the lists of all other vertices. Call the new list system L'.
- ▶ in (G, L') each list has at most 2 entries and thus there is a small minimal obstruction H

• assume there is a dominating P_4

- ► We guess its coloring and then reduce the lists of all other vertices. Call the new list system L'.
- ▶ in (G, L') each list has at most 2 entries and thus there is a small minimal obstruction H

• for every coloring of the P_4 , we pick a small obstruction H

• for every coloring of the P_4 , we pick a small obstruction H

• for every coloring of the P_4 , we pick a small obstruction H

due to the minimality of G, every vertex of G appears in one of the small graphs H

• for every coloring of the P_4 , we pick a small obstruction H

- due to the minimality of G, every vertex of G appears in one of the small graphs H
- we have constantly many H's, so G has a bounded order

we want to determine the complexity of k-colorability in H-free graphs

- we want to determine the complexity of k-colorability in H-free graphs
- the results are almost tight, except for 3-colorability...

- we want to determine the complexity of k-colorability in H-free graphs
- the results are almost tight, except for 3-colorability...
- we can describe exactly which cases allow for a finite forbidden induced subgraph characterization

- we want to determine the complexity of k-colorability in H-free graphs
- the results are almost tight, except for 3-colorability...
- we can describe exactly which cases allow for a finite forbidden induced subgraph characterization

Thanks!

Critical graphs

► There is an infinite family of *P*₇-free obstructions:

Critical graphs

► There is an infinite family of *P*₇-free obstructions:

- Easy: infinite familes of claw-free obstructions, and obstructions of large girth
- If H is connected and not a subgraph of P₆, there are infinitely many obstructions in the class of H-free graphs