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What is a nice graph property, meaning it allows for such a
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problem in polynomial time: every vertex is equipped with a list
L(v) ⊆ {1, . . . , k} of admissible colors.
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The list 3-colorability problem can be solved in polynomial time for
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on the graphs that have property P after removing r vertices.
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There are only finitely many P4-free k-obstructions, for all k.

If a property applies to all paths, there is no such polynomial
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Theorem (Chudnovsky, Goedgebeur, S, Zhong 2016)

Let H be a connected graph. The following two assertions are
equivalent.

I The 3-colorability problem admits a polynomial kernel of order
rO(1) on the graphs that are H-free after removing r vertices.

I H is a path on at most six vertices.

We assume that NP 6⊆ coNP/poly.

Open Problem

Characterize the existence of a polynomial kernel for arbitrary
graph properties closed under vertex deletion.
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You cannot do better than P6.

I we do know these obstructions have at most 22
104

vertices

I gives a kernel of order r3·2
2104

I there are 1 441 407 obstructions on at most 9 vertices
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union of two paths (not disjoint) starting in v
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I using a computer search, we can prove that both paths have
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I due to the minimality of G , every vertex of G appears in one
of the small graphs H

I we have constantly many H’s, so G has a bounded order
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I we want to determine the complexity of k-colorability in
H-free graphs

I the results are almost tight, except for 3-colorability. . .

I we can describe exactly which cases allow for a finite
forbidden induced subgraph characterization

Thanks!
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obstructions of large girth

I If H is connected and not a subgraph of P6, there are
infinitely many obstructions in the class of H-free graphs
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