### PHOEG Helps Obtaining Extremal Graphs

#### Hadrien Mélot

Joint work with Gauvain Devillez and Pierre Hauweele

Service d'Algorithmique, Département d'Informatique Faculté des Sciences, Université de Mons

**UMONS** 

GGTW, Ghent, August 18, 2017

#### Introduction

We consider simple undirected graphs.



For a graph G = (V, E),

- its order |V| is denoted by n;
- its size |E| is denoted by m.

#### Introduction

- Context: Computer-assisted Discovery in Extremal Graph Theory
- Several existing systems: Graph, Graffiti, AutoGraphiX, GraPHedron, . . .
  - exploit different ideas to help graph theorists
- Objectives of this talk:
  - presentation of PHOEG, a successor of GraPHedron
  - use of an illustrative problem (eccentric connectivity index, ECI)
- Remark: work under progress
  - PHOEG is currently a prototype
  - the problem about ECI is not fully solved

## Eccentric Connectivity Index

#### **Definition**

The Eccentric Connectivity Index (ECI) of a graph G, denoted by  $\xi^c(G)$ , is

$$\xi^{c}(G) = \sum_{v \in V} d(v)\epsilon(v).$$

#### Example



# Upper bound on $\xi^c$ for connected graphs with fixed size

#### **Problem**

Among connected graphs of order n and size m, what is the maximum possible value for  $\xi^c$ ?

(To avoid infinite eccentricities, we restrict the problem to connected graph)

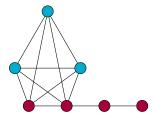
We define  $E_{n,m}$  as follows :

$$n = 7, m = 14$$

#### We define $E_{n,m}$ as follows :

■ The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.

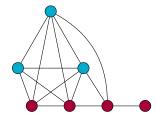
$$n = 7, m = 14$$



#### We define $E_{n,m}$ as follows:

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

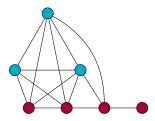
$$n = 7, m = 14$$



#### We define $E_{n,m}$ as follows:

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

$$n = 7, m = 14$$



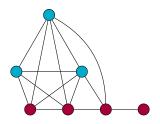
This graph is unique for given n and m.

For positive integers n and m with  $n-1 \le m \le \binom{n}{2}$ , let define

$$d_{n,m}=\left\lfloor\frac{2n+1-\sqrt{17+8(m-n)}}{2}\right\rfloor.$$

#### Remarks:

- In the following, we simply use d for  $d_{n,m}$ ;
- $\blacksquare$  d is decreasing when m increase (and n fixed);
- For  $E_{n,m}$ , d is its diameter.



## Conjecture of Zhang, Liu and Zhou

#### Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a connected graph of order n and size m such that  $d \ge 3$ . Then,

$$\xi^c(G) \leq \xi^c(E_{n,m}),$$

with equality if and only if  $G \simeq E_{n,m}$ .

- The authors prove that the conjecture is true when  $m = n 1, n, \dots, n + 4$  (if n is large enough).
- It exists a "proof" published in a journal of University of Isfahan (Iran, 2014) but that is obviously wrong.

## Conjecture of Zhang, Liu and Zhou

### Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a connected graph of order n and size m such that  $d \geq 3$ . Then,  $\xi^c(G) \leq \xi^c(E_{n,m})$ , with equality iff  $G \simeq E_{n,m}$ .

#### This conjecture leads to several questions:

- Is the conjecture true?
- If yes, how to prove it?
- If no, how to improve or correct it?
- What about graphs such that  $d \le 2$ ?

### How the computer can help?

In the following, we will show how PHOEG can help study all of the above questions and raise new ones.

P  $H_{elps}$   $O_{btaining}$   $E_{xtremal}$   $G_{raphs}$ 

#### Overview of PHOEG

- Former system (GraPHedron): graphs and invariant's values written sequentially in files;
- PHOEG uses a PostgreSQL DB with more than 12 millions of non-isomorphic graphs (up to order 10) and tables of corresponding invariants' values;
- Invariant's values are computed once (useful for NP-hard invariants);
- Each graph has its unique signature used as primary key (canonical form, thanks to Nauty)
- This allows complex (and fast) queries on graphs.

### Database query – Points and multiplicities

```
SELECT P.val AS eci, num_edges.val AS m,
                                             eci I m
 COUNT(*) AS mult
                                              ----+----
FROM eci P
                                              47 I
                                                            5
                                              46 I
                                                    8 I
 JOIN num_vertices USING(signature)
 JOIN num_edges USING(signature)
                                              40 I
                                                    8 I
WHERE num_vertices.val = 7
                                               32 L
GROUP BY m, eci;
                                              48 | 12 |
                                                           55
                                              48 I
                                                   18 I
                                              61 l
                                                   14 l
                                               59 | 13 |
                                               48 | 11 |
                                                           17
                                              43 | 9 |
                                                           14
                                               47 I
                                                    6 I
                                               64 | 10 |
                                               59 I
                                              45 I 9 I
                                               38 I 6 I
```

 $[\ldots]$ 

## Database query - Polytope

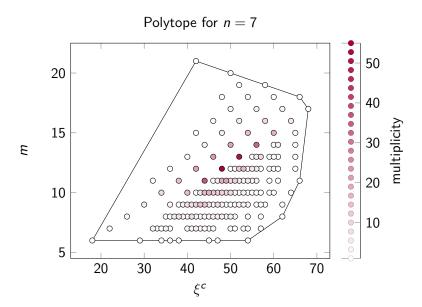
#### Main principle:

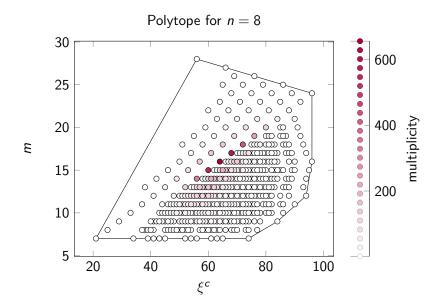
- view graphs as points in the space of invariants;
- $\blacksquare$  compute the convex hull of these points (for small values of n).

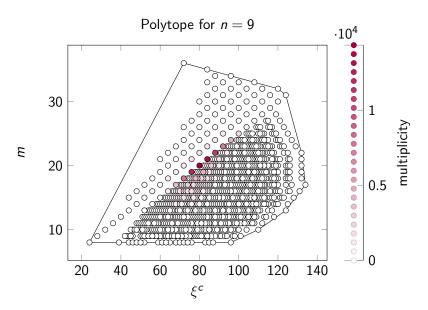
```
SELECT ST_AsText(ST_ConvexHull(ST_Collect(ST_Point(eci, m))))
FROM poly;
```

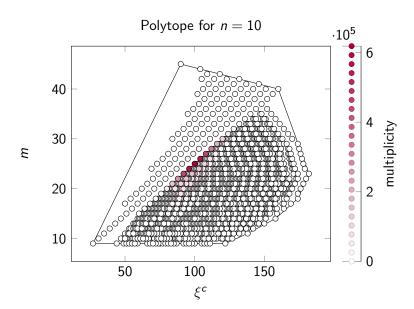
st\_astext

POLYGON((18 6,42 21,66 18,68 17,66 11,62 8,54 6,18 6))

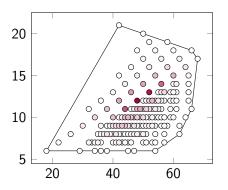








## Observations and questions



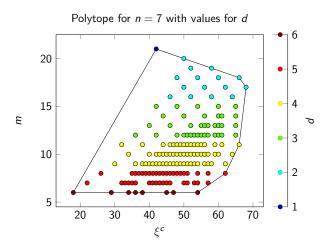
- Is the conjecture of Zhang, Liu and Zhou true when d > 3?
- Upper bound when  $d \le 2$ ?
- How to explain the grid?

### Database query – adding other information

```
SELECT num_edges.val AS m,
                                                leci I d I diam
   p.val AS eci, d.val AS d,
                                                 ----+---+----
   diam.val AS diam
                                            21
FROM eci p
                                            16 I
                                                  46
  JOIN num_vertices USING(signature)
                                            16 l
  JOIN num_edges USING(signature)
                                            16 I
  JOIN d USING(signature)
                                            16 I
  JOIN diam USING(signature)
                                            16 I
                                                  52 I
                                                               2
WHERE num_vertices.val = 7
                                            16 l
ORDER BY diam, d, m, eci;
                                            16 I
                                                  58
                                            16 I
                                                  58
                                                               2
                                            16 I
                                                  58
                                            16 I
                                                  58
                                                               2
                                            16 I
                                                  58
                                            16 I
                                                  58
                                                               2
                                            16 I
                                                  58 I
                                                  58 I
                                            16 I
```

[...]

## Coloring points with values of d



Is the conjecture true for  $d \ge 3$ ?

## Database query – Extremal graphs

```
WITH tmp AS (
                                                 |n|m|eci|d
  SELECT n.val AS n, m.val AS m,
                                           F@IQO | 7 |
   P.signature, P.val AS eci, d.val AS d
                                                        6 I
                                                             54 l
   rank() OVER (
                                           F@'J | 7 | 7 |
                                           FgCXW | 7 |
     PARTITION BY n.val, m.val
                                                        8 I
     ORDER BY P.val DESC
                                           FWCYw | 7 |
                                                        9 I
                                           FgCxw |
                                                   7 | 10 |
   ) AS pos
 FROM num vertices n
                                           F'Kyw | 7 | 11 |
                                                             66
  JOIN num edges m USING(signature)
                                           F'Kzw | 7 | 12 |
                                                             65
  JOIN d USING(signature)
                                           F'I.zw | 7 | 13 |
                                                             65
  JOIN eci P USING(signature)
                                           F'\zw | 7 | 14 |
                                                             65
  WHERE n.val = 7
                                           FJ]|w | 7 | 15 |
                                                             65 l
                                           F.J\|w | 7 | 15 |
                                                             65 I
SELECT signature AS sig, n, m, eci, d
FROM tmp
```

WHERE pos = 1 AND d >= 3 ORDER BY n, m, d, eci;

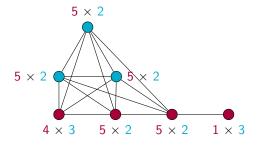
## Database query – Extremal graphs

```
WITH tmp AS (
                                                 |n|m|eci|d
  SELECT n.val AS n, m.val AS m,
                                                       6 I
   P.signature, P.val AS eci, d.val AS d
                                           F@IQO | 7 |
                                                             54 l
   rank() OVER (
                                           F@'J | 7 | 7 |
                                           FgCXW | 7 | 8 |
     PARTITION BY n.val, m.val
     ORDER BY P.val DESC
                                           FWCYw | 7 |
                                                       9 I
                                           FgCxw |
                                                  7 | 10 |
   ) AS pos
 FROM num_vertices n
                                           F'Kyw | 7 | 11 |
                                                             66 I
  JOIN num edges m USING(signature)
                                           F'Kzw | 7 | 12 |
  JOIN d USING(signature)
                                           F'I.zw | 7 | 13 |
                                                             65
  JOIN eci P USING(signature)
                                          F'\zw | 7 | 14 |
                                                             65
  WHERE n.val = 7
                                          FJ]|w | 7 | 15 |
                                                             65 l
                                          F.J\|w | 7 | 15 |
                                                             65 I
SELECT signature AS sig, n, m, eci, d
FROM tmp
```

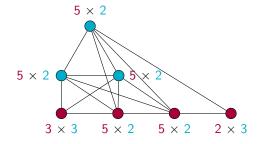
Counter-example to the conjecture: no unicity for extremal graphs

WHERE pos = 1 AND d >= 3 ORDER BY n, m, d, eci;

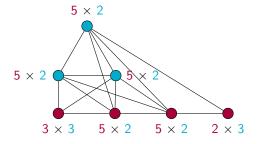
# Counter-example (n = 7 and m = 15)



# Counter-example (n = 7 and m = 15)

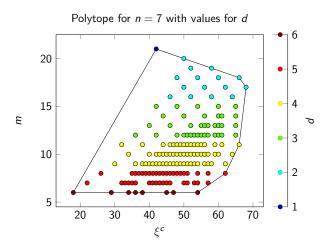


## Counter-example (n = 7 and m = 15)



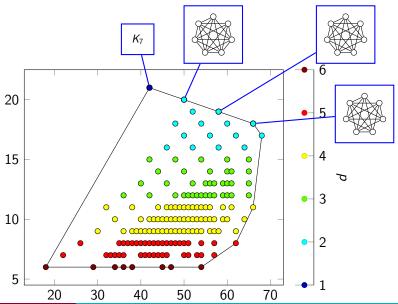
It is possible to construct counter-examples for any values of  $n \ge 6$  (with d = 3).

## Coloring points with values of d



Upper bound when  $d \leq 2$ ?

# Upper facet of the polytope (n = 7)



## A new upper bound tight when $d \leq 2$

#### **Theorem**

Let G be a graph of order n and size m. Then,

$$\xi^{c}(G) \leq n(n-1)(n-2) - 2m(n-3),$$

with equality if and only if G is the complement of a matching.

Note that the bound is valid for all graphs but can be tight only if

$$m \geq \binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor,$$

(and thus  $d \leq 2$ ).

## PHOEG - Transproof

Up to this point, we have

- a tight upper bound when  $d \le 2$ ;
- and counter-examples for the unicity if d = 3.

It is also possible to have an explanation of the grid using PHOEG (skipped).

Is the conjecture true if  $d \ge 4$ ? (actually, we believe it is).

If yes, is PHOEG able to help for a proof?

## PHOEG - Transproof

Up to this point, we have

- a tight upper bound when  $d \le 2$ ;
- and counter-examples for the unicity if d = 3.

It is also possible to have an explanation of the grid using PHOEG (skipped).

Is the conjecture true if  $d \ge 4$ ? (actually, we believe it is).

If yes, is PHOEG able to help for a proof?

This is the purpose of the *Transproof* module:

- using graph transformations is a common proof technique;
- not always easy to find "good" transformations.

# Metagraph of rotations that increase $\xi^c$ (n = 5 and m = 6)



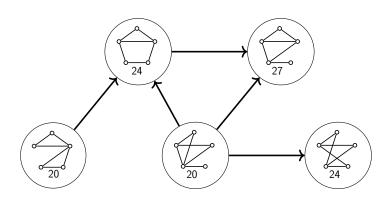








# Metagraph of rotations that increase $\xi^c$ (n = 5 and m = 6)



Applying only one rotation is thus not sufficient to have a proof.

## Metagraph of transformations

- Idea : find an "improving path" from any graph to an extremal graph
- Metagraph stored in a graph DB (Neo4j)
  - for all graphs up to order 9
  - using 8 simple transformations
  - ightharpoonup for n=9, it makes a metagraph of order 274 668 and size 380 814 904
- $\blacksquare$  Useful to reject / find good transformations while searching for a proof

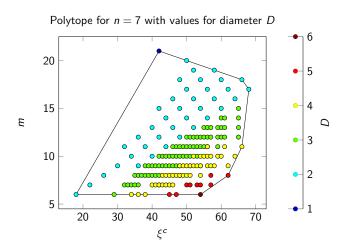
## Concluding remarks

- Not only extremal graphs are useful to study extremal properties of an invariant
- lacksquare Exact approach limited to small graphs  $(n \leq 10)$
- However, dealing with small graphs has already shown to be very useful and led to numerous results (AutoGraphiX, GraPHedron)
- PHOEG is intended to be an ecosystem of useful modules (e.g., Forbidden Subgraph Characterization)

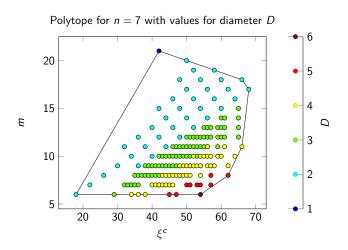
#### Perspectives

- Invariants' DB allows a form of dynamic programming
- Create a simple interface for queries
- Allow easy visualization and manipulation of outputs (GUI, PDF, etc.)
- Simplify the definitions of transformations
- Suggest automatically (a short list of) transformations

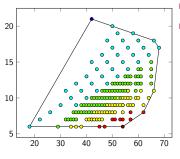
### Coloring points with highest diameter



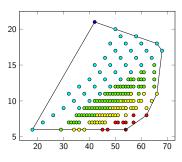
### Coloring points with highest diameter



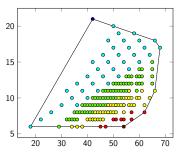
Can the diameter explain the blue grid? Actually, yes!



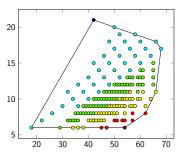
- Suppose D(G) = 2 (light blue points)
- For each vertex v, since D(G) = 2, either  $\epsilon(v) = 1$  or  $\epsilon(v) = 2$



- Suppose D(G) = 2 (light blue points)
- For each vertex v, since D(G)=2, either  $\epsilon(v)=1$  or  $\epsilon(v)=2$
- If  $\epsilon(v) = 1$ , then v is dominant and d(v) = n 1

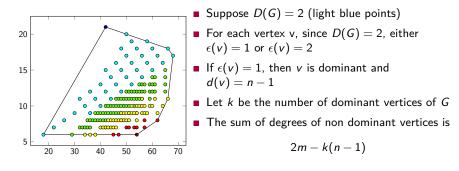


- Suppose D(G) = 2 (light blue points)
- For each vertex v, since D(G) = 2, either  $\epsilon(v) = 1$  or  $\epsilon(v) = 2$
- If  $\epsilon(v) = 1$ , then v is dominant and d(v) = n 1
- Let k be the number of dominant vertices of G



- Suppose D(G) = 2 (light blue points)
- For each vertex v, since D(G)=2, either  $\epsilon(v)=1$  or  $\epsilon(v)=2$
- If  $\epsilon(v) = 1$ , then v is dominant and d(v) = n 1
- Let k be the number of dominant vertices of G
- The sum of degrees of non dominant vertices is

$$2m-k(n-1)$$



Thus,

$$\xi^{c}(G) = k(n-1) + 2(2m - k(n-1)) = 4m - k(n-1),$$

that is maximum if k = 0 and, moreover, explain the grid.