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Comenius University, Bratislava

GGTW 2017, Ghent, August 2017

joint work with Martin Škoviera

Edita Máčajová (Bratislava) ... August 2017 1 / 25



Introduction

3-edge-colourings of cubic graph have been investigated for more than
100 years

cubic graphs
I 3-edge-colourabe
I snarks – cubic graphs that do not admit a 3-edge-colouring
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Introduction

almost all cubic graphs are hamiltonian and therefore
3-edge-colourabe [Robinson, Wormald, 1992]

it is an NP-complete problem to decide whether given cubic graph is
snark or not [Holyer, 1981] (reduction from 3SAT)

snarks are crucial for many conjectures and open problems (Cycle
double cover conjecture, 5-Flow conjecture)
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Perfect matchings in cubic graphs

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.
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6 perfect matchings on I5
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Berge Conjecture ⇔ Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings
that together cover all the edges of the graph.

Theorem (Mazzuoccolo, 2011)

The Berge Conjecture and the Fulkerson Conjecture are equivalent.
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Edita Máčajová (Bratislava) ... August 2017 6 / 25



Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty
intersection.

M1

∅

M2 ∩M3 M1 ∩M2

M1 ∩M3

M2 M3
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Perfect matching covers of cubic graphs

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

perfect matchings index τ(G ) – the smallest number of perfect matchings
that cover E (G )

τ(G ) is a finite number for every cubic bridgeless graph G

τ(G ) ≥ 3 for every bridgeless cubic graph

τ(G ) = 3 ⇔ G is 3-edge-colourable

Berge Conjecture ⇒ τ(G ) ≤ 5 for every bridgeless cubic G

Cubic graphs with τ(G ) ≤ 4 are counterexamples to neither 5-CDCC
nor Fan-Raspaud Conjecture
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Point-line configurations

sometimes useful: use more than 3 colours and specify the allowed
triples

configuration C = (P,B)
I P – finite set of points
I B – finite set of blocks (3-element subsets of P such that for each pair

of points of P there is at most one block of B which contains both of
them)
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Edita Máčajová (Bratislava) ... August 2017 9 / 25



Example: a configuration

this configuration is not universal
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“K4”-configuration and four perfect matchings

configuration T

10 points, 6 blocks

this configuration is not 3-colourable

Theorem (EM,Škoviera, 2017+)

A cubic graph G is T -colourable ⇔ the edges of G can be covered by at
most 4 perfect matchings.
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Perfect matching covers of cubic graphs

until 2013 was the Petersen graph the only known nontrivial snark
with τ(G ) = 5

I A cubic graph is nontrivial if it has
F cyclic connectivity ≥ 4
F girth ≥ 5

in 2013 [Brinkmann, Goedgebeur, Hägglund, Markström] constructed
all nontrivial snarks up to 36 vertices; there are exactly 64326024 of
them

only two of them have τ(G ) 6= 4:
the Petersen graph and a snark of order 34

both have τ(G ) = 5
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all nontrivial snarks up to 36 vertices; there are exactly 64326024 of
them

only two of them have τ(G ) 6= 4:
the Petersen graph and a snark of order 34

both have τ(G ) = 5
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all nontrivial snarks up to 36 vertices; there are exactly 64326024 of
them

only two of them have τ(G ) 6= 4:
the Petersen graph and a snark of order 34

both have τ(G ) = 5

Edita Máčajová (Bratislava) ... August 2017 12 / 25



Perfect matching covers of cubic graphs

until 2013 was the Petersen graph the only known nontrivial snark
with τ(G ) = 5

I A cubic graph is nontrivial if it has
F cyclic connectivity ≥ 4
F girth ≥ 5

in 2013 [Brinkmann, Goedgebeur, Hägglund, Markström] constructed
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A snark of order 34 with τ(G ) = 5
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Snarks with τ(G ) ≥ 5: Construction 1

Esperet & Mazzuoccolo (2014): windmill construction
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Snarks with τ(G ) ≥ 5: Construction 2

Abreu et al. (2016+): treelike snarks
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Snarks with τ(G ) ≥ 5: Construction 2

Abreu et al. (2016+): treelike snarks

Treelike snarks have a more general shape than windmill snarks.

However:

Building blocks are restricted to the Petersen graph.

Proofs heavily depend on computer-aided arguments.
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Edita Máčajová (Bratislava) ... August 2017 16 / 25



Snarks with τ(G ) ≥ 5: Construction 2

Abreu et al. (2016+): treelike snarks

Treelike snarks have a more general shape than windmill snarks.

However:

Building blocks are restricted to the Petersen graph.

Proofs heavily depend on computer-aided arguments.
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Snarks with τ(G ) ≥ 5: Construction 2

Abreu et al. (2016+): treelike snarks
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Tetrahedral Z4
2-flow

1110

1101

0101

101111000111

1001

0011

01101010
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Types of connector inputs of size 2

1101

1011

1110

axisangle

11000111

1001

altitudehalf−line

0011
01101010

1110

1101

0101

101111000111

1001

0011
01101010

1110

1101

0101

101111000111

1001

0011
01101010

1110

1101

0101

101111000111

1001

0011
01101010

1110

1101

0101

101111000111

1001

0011
01101010

1110

1101

0101

101111000111

1001

0011
01101010

1110

1101

0101

101111000111

1001

line−segment

zerozero

0011
01101010

0101
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Set of transitions M

Let M be the set of all transition through a (2, 2; 1)-pole containing all
the transition of the following types:

axis
1→ half-line

line-seg
1→ half-line

zero
1→ half-line

angle
1→ half-line

angle
1→ altitude

altitude
1→ line-seg

axis
2→ line-seg

line-seg
2→ line-seg

line-seg
2→ zero

zero
2→ line-seg

zero
2→ angle

angle
2→ angle

angle
2→ zero

angle
2→ line-seg

altitude
2→ altitude

altitude
2→ half-line
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Set of transitions M

half−line

angle

axis

0

altitude

edge
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Set of transitions M

Theorem (EM, Škoviera, 2017+)

Let S be a (2, 2)-pole created from a snark G with τ(G ) ≥ 5 by
removing two adjacent vertices. Then T(S ◦ I ) ⊆M.

T(Mi ) ⊆M for i ∈ {1, 2}. Then T(M1 •M2) ⊆M.

T(Mi ) ⊆M for i ∈ {1, 2, 3}. Then each transition of
T(M1 ◦M2 ◦M3) is of type angle → line-segment.
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Set of transitions M

Theorem (EM, Škoviera, 2017+)

Let S be a (2, 2)-pole created from a snark G with τ(G ) ≥ 5 by
removing two adjacent vertices. Then T(S ◦ I ) ⊆M.

T(Mi ) ⊆M for i ∈ {1, 2}. Then T(M1 •M2) ⊆M.

T(Mi ) ⊆M for i ∈ {1, 2, 3}. Then each transition of
T(M1 ◦M2 ◦M3) is of type angle → line-segment.

angle line−segment
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Results

Corollary (EM, Škoviera, 2017+)

Let G be a Halin snark. Then τ(G ) ≥ 5

For every even integer n ≥ 44 there exists a snark Gn of order n with
τ(Gn) ≥ 5.

τ -resistance of a cubic graph can be arbitrarily high
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Thank you!

Edita Máčajová (Bratislava) ... August 2017 25 / 25


