Snarks that cannot be covered with four perfect matchings

Edita Máčajová

Comenius University, Bratislava

GGTW 2017, Ghent, August 2017

joint work with Martin Škoviera

• 3-edge-colourings of cubic graph have been investigated for more than 100 years

- 3-edge-colourings of cubic graph have been investigated for more than 100 years
- cubic graphs
 - 3-edge-colourabe
 - snarks cubic graphs that do not admit a 3-edge-colouring

- 3-edge-colourings of cubic graph have been investigated for more than 100 years
- cubic graphs
 - 3-edge-colourabe
 - snarks cubic graphs that do not admit a 3-edge-colouring

• almost all cubic graphs are hamiltonian and therefore 3-edge-colourabe [Robinson, Wormald, 1992]

- almost all cubic graphs are hamiltonian and therefore 3-edge-colourabe [Robinson, Wormald, 1992]
- it is an NP-complete problem to decide whether given cubic graph is snark or not [Holyer, 1981] (reduction from 3SAT)

- almost all cubic graphs are hamiltonian and therefore 3-edge-colourabe [Robinson, Wormald, 1992]
- it is an NP-complete problem to decide whether given cubic graph is snark or not [Holyer, 1981] (reduction from 3SAT)
- snarks are crucial for many conjectures and open problems (Cycle double cover conjecture, 5-Flow conjecture)

Perfect matchings in cubic graphs

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

6 perfect matchings on I_5

6 perfect matchings on I_5

Berge Conjecture ⇔ Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

Berge Conjecture ⇔ Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

Berge Conjecture ⇔ Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings that together cover each edge exactly twice.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings that together cover all the edges of the graph.

Theorem (Mazzuoccolo, 2011)

The Berge Conjecture and the Fulkerson Conjecture are equivalent.

Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty intersection.

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

perfect matchings index $\tau(G)$ – the smallest number of perfect matchings that cover E(G)

• $\tau(G)$ is a finite number for every cubic bridgeless graph G

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

- $\tau(G)$ is a finite number for every cubic bridgeless graph G
- $\tau(G) \geq 3$ for every bridgeless cubic graph

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

- $\tau(G)$ is a finite number for every cubic bridgeless graph G
- $\tau(G) \geq 3$ for every bridgeless cubic graph
- $\tau(G) = 3 \Leftrightarrow G$ is 3-edge-colourable

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

- $\tau(G)$ is a finite number for every cubic bridgeless graph G
- $\tau(G) \geq 3$ for every bridgeless cubic graph
- $\tau(G) = 3 \Leftrightarrow G$ is 3-edge-colourable
- Berge Conjecture $\Rightarrow \tau(G) \leq 5$ for every bridgeless cubic G

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schönberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

- $\tau(G)$ is a finite number for every cubic bridgeless graph G
- $\tau(G) \geq 3$ for every bridgeless cubic graph
- $\tau(G) = 3 \Leftrightarrow G$ is 3-edge-colourable
- Berge Conjecture $\Rightarrow \tau(G) \leq 5$ for every bridgeless cubic G
- Cubic graphs with *τ*(*G*) ≤ 4 are counterexamples to neither 5-CDCC nor Fan-Raspaud Conjecture

Point-line configurations

• sometimes useful: use more than 3 colours and specify the allowed triples

Point-line configurations

- sometimes useful: use more than 3 colours and specify the allowed triples
- configuration C = (P, B)
 - P finite set of points
 - B finite set of blocks (3-element subsets of P such that for each pair of points of P there is at most one block of B which contains both of them)

Example: a configuration

Example: a configuration

Example: a configuration

this configuration is not universal

"K₄"-configuration and four perfect matchings

configuration \mathcal{T}

"K₄"-configuration and four perfect matchings

configuration ${\mathcal T}$

- 10 points, 6 blocks
- this configuration is not 3-colourable

"K₄"-configuration and four perfect matchings

configuration ${\mathcal T}$

- 10 points, 6 blocks
- this configuration is not 3-colourable

Theorem (EM,Škoviera, 2017+)

A cubic graph G is \mathcal{T} -colourable \Leftrightarrow the edges of G can be covered by at most 4 perfect matchings.

• until 2013 was the Petersen graph the only known *nontrivial* snark with $\tau(G) = 5$

- until 2013 was the Petersen graph the only known *nontrivial* snark with $\tau(G) = 5$
 - A cubic graph is nontrivial if it has
 - ★ cyclic connectivity \ge 4
 - ***** girth \geq 5

- until 2013 was the Petersen graph the only known *nontrivial* snark with $\tau(G) = 5$
 - A cubic graph is nontrivial if it has
 - ★ cyclic connectivity ≥ 4
 - \star girth \geq 5
- in 2013 [Brinkmann, Goedgebeur, Hägglund, Markström] constructed all nontrivial snarks up to 36 vertices; there are exactly 64326024 of them

- until 2013 was the Petersen graph the only known *nontrivial* snark with $\tau(G) = 5$
 - A cubic graph is nontrivial if it has
 - ★ cyclic connectivity ≥ 4
 - \star girth \geq 5
- in 2013 [Brinkmann, Goedgebeur, Hägglund, Markström] constructed all nontrivial snarks up to 36 vertices; there are exactly 64326024 of them
- only two of them have *τ*(*G*) ≠ 4:
 the Petersen graph and a snark of order 34

- until 2013 was the Petersen graph the only known *nontrivial* snark with $\tau(G) = 5$
 - A cubic graph is nontrivial if it has
 - ★ cyclic connectivity ≥ 4
 - \star girth \geq 5
- in 2013 [Brinkmann, Goedgebeur, Hägglund, Markström] constructed all nontrivial snarks up to 36 vertices; there are exactly 64326024 of them
- only two of them have τ(G) ≠ 4: the Petersen graph and a snark of order 34
- both have $\tau(G) = 5$

A snark of order 34 with $\tau(G) = 5$

Abreu et al. (2016+): treelike snarks

• Treelike snarks have a more general shape than windmill snarks.

Abreu et al. (2016+): treelike snarks

• Treelike snarks have a more general shape than windmill snarks. However:

• Building blocks are restricted to the Petersen graph.

```
Snarks with \tau(G) \geq 5: Construction 2
```

Abreu et al. (2016+): treelike snarks

• Treelike snarks have a more general shape than windmill snarks. However:

- Building blocks are restricted to the Petersen graph.
- Proofs heavily depend on computer-aided arguments.

Abreu et al. (2016+): treelike snarks

8.1 The pattern set of the Petersen fragment

The pattern set of F_0 (42 patterns):

1	÷ (1 /	
A A AB AC AD	A B CD AB AB	A BC D BC BC
A A AB C D	A B CD AC AC	A BC D BD BD
A AB A AC AD	A B CD C C	A BC D D D
A AB A BC BD	A B CD CD CD	AB AB AB AC AD
A AB AC A AD	A BC A AB BD	AB AC AB AB AD
A AB AC B BD	A BC B AB AD	AB AC AB BC CD
A AB AC C CD \sim	A BC B BC CD	AB AC AD A A
A B AB AB CD	A BC BD A AB	AB AC AD AB AB
A B AB AC BD	A BC BD BC C	AB AC AD AD AD
A B AC A D	A BC BD BD D	AB AC AD B B
A B AC AB BD	A BC D A A	AB AC AD BC BC
A B C A AD	A BC D AB AB	AB AC AD BD BD
A B C C CD	A BC D AD AD	AB AC AD D D
A B CD A A	A BC D B B	AB CD AC AB BC

Tetrahedral \mathbb{Z}_2^4 -flow

Types of connector inputs of size 2

Set of transitions \mathcal{M}

Let \mathcal{M} be the set of all transition through a (2, 2; 1)-pole containing all the transition of the following types:

- axis $\stackrel{1}{\rightarrow}$ half-line
- line-seg $\xrightarrow{1}$ half-line
- zero $\xrightarrow{1}$ half-line
- angle $\xrightarrow{1}$ half-line
- angle $\xrightarrow{1}$ altitude
- altitude $\xrightarrow{1}$ line-seg

- axis $\stackrel{2}{\rightarrow}$ line-seg
- line-seg $\xrightarrow{2}$ line-seg
- line-seg $\xrightarrow{2}$ zero
- zero $\xrightarrow{2}$ line-seg

• zero
$$\stackrel{2}{\rightarrow}$$
 angle

• angle $\xrightarrow{2}$ angle

- angle $\stackrel{2}{\rightarrow}$ zero
- $\bullet \text{ angle} \stackrel{2}{\rightarrow} \text{line-seg}$
- altitude $\xrightarrow{2}$ altitude
- altitude $\xrightarrow{2}$ half-line

Theorem (EM, Škoviera, 2017+)

 Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.

Theorem (EM, Škoviera, 2017+)

 Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.

Theorem (EM, Škoviera, 2017+)

 Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.

• $\mathbf{T}(M_i) \subseteq \mathcal{M}$ for $i \in \{1, 2\}$. Then $\mathbf{T}(M_1 \bullet M_2) \subseteq \mathcal{M}$.

Theorem (EM, Škoviera, 2017+)

- Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.
- $\mathbf{T}(M_i) \subseteq \mathcal{M}$ for $i \in \{1, 2\}$. Then $\mathbf{T}(M_1 \bullet M_2) \subseteq \mathcal{M}$.

Set of transitions ${\cal M}$

Theorem (EM, Škoviera, 2017+)

 Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.

- $\mathbf{T}(M_i) \subseteq \mathcal{M}$ for $i \in \{1, 2\}$. Then $\mathbf{T}(M_1 \bullet M_2) \subseteq \mathcal{M}$.
- $T(M_i) \subseteq M$ for $i \in \{1, 2, 3\}$. Then each transition of $T(\overline{M_1 \circ M_2 \circ M_3})$ is of type angle \rightarrow line-segment.

Theorem (EM, Škoviera, 2017+)

- Let S be a (2,2)-pole created from a snark G with τ(G) ≥ 5 by removing two adjacent vertices. Then T(S ∘ I) ⊆ M.
- $\mathbf{T}(M_i) \subseteq \mathcal{M}$ for $i \in \{1, 2\}$. Then $\mathbf{T}(M_1 \bullet M_2) \subseteq \mathcal{M}$.
- $T(M_i) \subseteq M$ for $i \in \{1, 2, 3\}$. Then each transition of $T(\overline{M_1 \circ M_2 \circ M_3})$ is of type angle \rightarrow line-segment.

Corollary (EM, Škoviera, 2017+)

• Let G be a Halin snark. Then $\tau(G) \ge 5$

Corollary (EM, Škoviera, 2017+)

- Let G be a Halin snark. Then $\tau(G) \ge 5$
- For every even integer $n \ge 44$ there exists a snark G_n of order n with $\tau(G_n) \ge 5$.

Corollary (EM, Škoviera, 2017+)

- Let G be a Halin snark. Then $\tau(G) \ge 5$
- For every even integer $n \ge 44$ there exists a snark G_n of order n with $\tau(G_n) \ge 5$.
- τ -resistance of a cubic graph can be arbitrarily high

Thank you!