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Introduction

@ almost all cubic graphs are hamiltonian and therefore
3-edge-colourabe [Robinson, Wormald, 1992]

@ it is an NP-complete problem to decide whether given cubic graph is
snark or not [Holyer, 1981] (reduction from 3SAT)

@ snarks are crucial for many conjectures and open problems (Cycle
double cover conjecture, 5-Flow conjecture)
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Perfect matchings in cubic graphs

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.
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Berge Conjecture < Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings
that together cover all the edges of the graph.
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Berge Conjecture < Fulkerson Conjecture

Fulkerson Conjecture (Berge, Fulkerson, 1971)

Every bridgeless cubic graphs contains a family of six perfect matchings
that together cover each edge exactly twice.

Berge Conjecture (Berge, 1979)

Every bridgeless cubic graphs contains a family of five perfect matchings
that together cover all the edges of the graph.

Theorem (Mazzuoccolo, 2011)

The Berge Conjecture and the Fulkerson Conjecture are equivalent.
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Fan-Raspaud Conjecture

Fan-Raspaud Conjecture, 1994

Every bridgeless cubic graph has three perfect matchings with empty
intersection.
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Perfect matching covers of cubic graphs
Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

Theorem (Schonberger, 1934)

Every edge of a bridgeless cubic graphs is contained in a perfect matching.

perfect matchings index 7(G) — the smallest number of perfect matchings
that cover E(G)

e 7(G) is a finite number for every cubic bridgeless graph G

e 7(G) > 3 for every bridgeless cubic graph

e 7(G) =3 & G is 3-edge-colourable

@ Berge Conjecture = 7(G) < 5 for every bridgeless cubic G

@ Cubic graphs with 7(G) < 4 are counterexamples to neither 5-CDCC
nor Fan-Raspaud Conjecture
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Point-line configurations

@ sometimes useful: use more than 3 colours and specify the allowed
triples
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Point-line configurations

@ sometimes useful: use more than 3 colours and specify the allowed
triples
e configuration C = (P, B)

» P — finite set of points
» B — finite set of blocks (3-element subsets of P such that for each pair

of points of P there is at most one block of B which contains both of
them)
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Example: a configuration
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Example: a configuration

this configuration is not universal
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“K,"-configuration and four perfect matchings

configuration 7

Edita MaZajovad (Bratislava)



“K," -configuration and four perfect matchings

configuration 7
@ 10 points, 6 blocks

@ this configuration is not 3-colourable
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“K," -configuration and four perfect matchings

configuration 7
@ 10 points, 6 blocks

@ this configuration is not 3-colourable

Theorem (EM Skoviera, 2017+)

A cubic graph G is 7 -colourable < the edges of G can be covered by at
most 4 perfect matchings.
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Perfect matching covers of cubic graphs

@ until 2013 was the Petersen graph the only known nontrivial snark
with 7(G) =5
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Perfect matching covers of cubic graphs

o until 2013 was the Petersen graph the only known nontrivial snark
with 7(G) =5
» A cubic graph is nontrivial if it has

* cyclic connectivity > 4
* girth > 5

@ in 2013 [Brinkmann, Goedgebeur, Hagglund, Markstrém] constructed
all nontrivial snarks up to 36 vertices; there are exactly 64326024 of
them

@ only two of them have 7(G) # 4:
the Petersen graph and a snark of order 34

@ both have 7(G) =5
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A snark of order 34 with 7(G) =5
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Abreu et al. (2016+): treelike snarks

@ Treelike snarks have a more general shape than windmill snarks.
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Abreu et al. (2016+): treelike snarks

@ Treelike snarks have a more general shape than windmill snarks.
However:

@ Building blocks are restricted to the Petersen graph.
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Snarks with 7(G) > 5: Construction 2

Abreu et al. (2016+): treelike snarks

@ Treelike snarks have a more general shape than windmill snarks.
However:

@ Building blocks are restricted to the Petersen graph.

@ Proofs heavily depend on computer-aided arguments.
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Abreu et al. (2016+): treelike snarks
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N
Snarks with 7(G) > 5: Construction 2

Abreu et al. (2016+): treelike snarks

8.1 The pattern set of the Petersen fragment

The pattern set of Fyy (42 patterns):

A A AB AC AD A BCD AB AB ABCDBCBC
AAABCD A BCD AC AC A BC D BD BD
A AB A AC AD ABCDCC ABCDDD

A AB A BC BD ABCDCD CD AB AB AB AC AD
A AB AC A AD A BC A AB BD AB AC AB AB AD
A AB AC B BD A BCB AB AD AB AC AB BC CD
A ABACCCD A BCBBCCD ABACAD A A
A B AB AB CD A BCBD A AB AB AC AD AB AB
A B AB AC BD A BCBD BC C AB AC AD AD AD
ABACAD A BCBD BD D ABACAD BB
A B AC AB BD ABCDAA AB AC AD BC BC
ABCAAD A BCD AB AB AB AC AD BD BD
ABCCCD A BCD AD AD ABACADDD
ABCDAA ABCDBB AB CD AC AB BC
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Tetrahedral Z3-flow

1101

0111 1100 1011
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Types of connector inputs of size 2

1101 1101 1101

1010 0110
A
orl1 1100 1011 or11 1100 1011 o111 1100 1011
line—segment half-line altitude
1101 1101 1101 1101
0
1010 0110 1010 0110 1010 0110
o111 1100 1011 oi11 1100 1011 o111 1100 1011 0111 1100 1011
angle axis Zero Zero
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N —
Set of transitions M

Let M be the set of all transition through a (2, 2; 1)-pole containing all
the transition of the following types:

o axis 5 half-line o axis > line-seg @ angle 2% zero

o line-seg L half-line o line-seg 2 line-seg o angle 2 line-seg

o zero > half-line o line-seg 2 zero o altitude > altitude
® angle = half-line o zero line-seg o altitude > half-line
@ angle 5 altitude o zero > angle

. 1. 2
@ altitude — line-seg @ angle = angle
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N —
Set of transitions M

T

half-line
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N —
Set of transitions M

Theorem (EM, Skoviera, 2017+)

o Let S be a(2,2)-pole created from a snark G with 7(G) > 5 by
removing two adjacent vertices. Then T(Sol) C M.
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Set of transitions M
Theorem (EM, Skoviera, 2017+)
o Let S be a(2,2)-pole created from a snark G with 7(G) > 5 by
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Set of transitions M

Theorem (EM, Skoviera, 2017+)

o Let S be a(2,2)-pole created from a snark G with 7(G) > 5 by
removing two adjacent vertices. Then T(Sol) C M.

e T(M;) C M forie€{1,2}. Then T(M; e M) C M.

o T(M;) C M fori e {1,2,3}. Then each transition of
T(My o My o M3) is of type angle — line-segment.

angle line—segment
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Results

Corollary (EM, Skoviera, 2017+)
o Let G be a Halin snark. Then 7(G) >5
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Corollary (EM, Skoviera, 2017+)
e Let G be a Halin snark. Then 7(G) > 5
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Results

Corollary (EM, Skoviera, 2017+)
e Let G be a Halin snark. Then 7(G) > 5

o For every even integer n > 44 there exists a snark G, of order n with
7(Gp) > 5.

e T-resistance of a cubic graph can be arbitrarily high
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