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Preliminaries

A bisection of a cubic graph G = (V ,E ) is a partition of its
vertex set V into two disjoint subsets (B,W) of the same
cardinality.

We refer to a connected component of the subgraphs induced
by a colour class as a monochromatic component.

A k–bisection of a graph G is a 2–colouring c of the vertex
set V (G ) such that:
(i) |B| = |W| (i.e. it is a bisection), and
(ii) each monochromatic component has at most k vertices.
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Ban–Linial’s Conjecture

Several papers consider 2–colourings of regular graphs which
satisfy condition (ii), but not necessarily condition (i).

It is easy to see that every cubic graph has a 2–colouring
where all monochromatic connected components are of order
at most 2, but, in general, such a colouring does not satisfy
condition (i) and so it is not a 2–bisection.

Thus, the existence of a 2–bisection in a cubic graph is not
guaranteed.

For instance, the Petersen graph does not admit a 2–bisection.

However, the Petersen graph is an exception since it is the
unique known bridgeless cubic graph without a 2–bisection.

Conjecture (Ban–Linial; 2016)

Every bridgeless cubic graph admits a 2–bisection, except for the
Petersen graph.
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An exception: Petersen Graph

The Petersen graph has no 2-bisection.



Ando’s Conjecture

Conjecture (Ando; 90’s)

Every cubic graph admits a bisection such that the two induced
monochromatic subgraphs are isomorphic.



Wormald’s Conjecture
A similar problem for the edge set of a cubic graph has been
studied.

A linear forest is a forest whose components are paths.

A linear partition of a graph G is a partition of its edge set
into linear forests

Conjecture (Wormald; 1987)

Let G be a cubic graph with |E (G )| ≡ 0 mod 2 (or equivalently
|V (G )| ≡ 0 mod 4). Then there exists a linear partition of G in
two isomorphic linear forests.



Wormald’s Conjecture
A similar problem for the edge set of a cubic graph has been
studied.

A linear forest is a forest whose components are paths.

A linear partition of a graph G is a partition of its edge set
into linear forests

Conjecture (Wormald; 1987)

Let G be a cubic graph with |E (G )| ≡ 0 mod 2 (or equivalently
|V (G )| ≡ 0 mod 4). Then there exists a linear partition of G in
two isomorphic linear forests.



Wormald’s Conjecture
A similar problem for the edge set of a cubic graph has been
studied.

A linear forest is a forest whose components are paths.

A linear partition of a graph G is a partition of its edge set
into linear forests

Conjecture (Wormald; 1987)

Let G be a cubic graph with |E (G )| ≡ 0 mod 2 (or equivalently
|V (G )| ≡ 0 mod 4). Then there exists a linear partition of G in
two isomorphic linear forests.



Wormald’s Conjecture
A similar problem for the edge set of a cubic graph has been
studied.

A linear forest is a forest whose components are paths.

A linear partition of a graph G is a partition of its edge set
into linear forests

Conjecture (Wormald; 1987)

Let G be a cubic graph with |E (G )| ≡ 0 mod 2 (or equivalently
|V (G )| ≡ 0 mod 4). Then there exists a linear partition of G in
two isomorphic linear forests.



Wormald’s Conjecture
A similar problem for the edge set of a cubic graph has been
studied.

A linear forest is a forest whose components are paths.

A linear partition of a graph G is a partition of its edge set
into linear forests

Conjecture (Wormald; 1987)

Let G be a cubic graph with |E (G )| ≡ 0 mod 2 (or equivalently
|V (G )| ≡ 0 mod 4). Then there exists a linear partition of G in
two isomorphic linear forests.



Main contents

Detailed insight into the Ban–Linial and Wormald’s
conjectures.

Provide evidence for the strong relations of both of them with
Ando’s Conjecture.

Computational and theoretical evidence in their support.

Open problems stronger than the above mentioned
conjectures.
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Ban–Linial’s Conjecture: known results

Conjecture (Ban–Linial; 2016)

Every bridgeless cubic graph admits a 2–bisection, except for the
Petersen graph.

Ban-Linial conjecture is open for BRIDGELESS cubic graphs.

(Esperet, Mazzuoccolo and Tarsi, 2016): construction of an
infinite class of 1-connected cubic graphs without a
2-bisection.

The best general result is the following:

Proposition (L.Esperet, G.Mazzuoccolo, M.Tarsi, 2016)

Every cubic graph has a 3-bisection
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Ban–Linial’s Conjecture: New Results

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): Ban–Linial’s
Conjecture evidences (2–bisections of cycle permutation and
claw–free graphs)

(Abreu, Goedgebeur, DL, Mazzuoccolo, 2017): There is no
bridgeless cubic graph of order up to 32 without a 2-bisection,
but the Petersen.
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Ban–Linial Conjecture: (Computational) New results

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): There are
exactly 34 graphs among the cubic graphs with at most 32
vertices which do not admit a 2–bisection. All of these
graphs, except the Petersen graph, have connectivity 1.

So this implies that the smallest counterexample to the
Ban–Linial Conjecture must have at least 34 vertices.

Ban and Linial have proven that every 3–edge colourable
cubic graph admits a 2–bisection.

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): The Petersen
graph is the only snark up to 36 vertices which does not admit
a 2–bisection.

Hence this provides further evidence to support the
correctness of Ban–Linial’s Conjecture.
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Order # no 2–bisection

0− 8 0
10 1

12− 20 0
22 1
24 1
26 3
28 5
30 9
32 14

Table: Number of cubic graphs which do not admit a 2–bisection.
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Conjecture (Ando’s Conjecture - 90’s)

Every cubic graph admits a bisection such that the two induced
monochromatic subgraphs are isomorphic.

Important remarks:

If a cubic graph admits a 2-bisection then it is NOT a
counterexample for Ando’s Conjecture,

BUT Ando’s Conjecture is not restricted to bridgeless cubic
graphs such as Ban-Linial’s Conjecture.

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Let G be a bridgeless cubic graph. If G is a counterexample for
Ando’s Conjecture, then it is also a counterexample for the
Ban–Linial Conjecture.



Ando’s Conjecture

Conjecture (Ando’s Conjecture - 90’s)

Every cubic graph admits a bisection such that the two induced
monochromatic subgraphs are isomorphic.

Important remarks:

If a cubic graph admits a 2-bisection then it is NOT a
counterexample for Ando’s Conjecture,

BUT Ando’s Conjecture is not restricted to bridgeless cubic
graphs such as Ban-Linial’s Conjecture.

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Let G be a bridgeless cubic graph. If G is a counterexample for
Ando’s Conjecture, then it is also a counterexample for the
Ban–Linial Conjecture.



Ando’s Conjecture: Cubic graphs without a 2-bisection

Petersen graph is not a counterexample for Ando’s Conjecture:



Ando’s Conjecture: Cubic graphs without a 2-bisection
1-connected graph without a 2-bisection:

An infinite family:

h copies

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

All members of this family of 1–connected cubic graphs with no
2–bisection admit a 3–bisection with isomorphic parts.
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We propose the following stronger version of Ando’s Conjecture:

Conjecture (Strong Ando’s Conjecture)

Every cubic graph admits a bisection with isomorphic parts + each
part is a linear forest

All graphs of order at most 24 and all known graphs without a
2–bisection are not counterexamples!
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Strong Ando’s Conjecture: Computational Results

All 34 cubic graphs which do not admit a 2–bisection up to 32
vertices, except the Petersen graph, have a 3–bisection such
that the two isomorphic induced monochromatic graphs are
linear forests.

The Petersen graph has no such bisection, but does admit a
4–bisection such that the two isomorphic induced
monochromatic graphs are linear forests.

Corollary (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

The Strong version of Ando’s conjecture (and thus also Ando’s
original conjecture) does not have any counterexamples with less
than 34 vertices.
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Synopsis

Conjecture Colouring Monochromatic Additional Subclass
Name components properties Cubic Graphs

Ban-Linial Vertices Paths Isomorphic Bridgeless*
≤ 2 vertices parts

Ando Vertices No restriction Isomorphic ALL
parts

Wormald Edges Paths Isomorphic |V | ≡ 0 (mod 4)
parts

Strong Vertices Paths Isomorphic ALL
Ando parts

* except Petersen Graph



Strong Wormald colourings vs Strong Ando colourings

Definition

Let G be a cubic graph. An Ando Colouring is a vertex colouring
cV : V (G ) −→ {B,W } of G such that the monochromatic
induced subgraphs are isomorphic .

Definition

Let G be a cubic graph with |V (G )| ≡ 0 mod 4. A Wormald
Colouring is an edge–colouring cE : E (G ) −→ {B,W } of G such
that the monochromatic induced subgraphs are isomorphic linear
forests .
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Strong Wormald colourings vs Strong Ando colourings

Definition

Let G be a cubic graph. A Strong Ando Colouring is a vertex
colouring cV : V (G ) −→ {B,W } of G such that the
monochromatic induced subgraphs are isomorphic linear forests.

Definition

Let G be a cubic graph with |V (G )| ≡ 0 mod 4. A Strong
Wormald Colouring is an edge–colouring cE : E (G ) −→ {B,W } of
G such that the monochromatic induced subgraphs are isomorphic
linear forests with paths of length at least 2.



Strong Wormald colourings vs Strong Ando colourings

The idea of introducing the concept of Strong Wormald Colouring
is mainly due to the following:

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Let G be a cubic graph graph with |V (G )| ≡ 0 mod 4
admitting a Strong Wormald Colouring. Then, G admits a Strong
Ando Colouring (and thus an Ando Colouring).
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Strong Wormald colourings vs Strong Ando colourings

The idea of introducing the concept of Strong Wormald Colouring
is mainly due to the following:

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Let G be a cubic graph graph admitting a Strong Wormald
Colouring. Then, G admits a Strong Ando Colouring (and thus an
Ando Colouring).



Strong Wormald colourings vs Strong Ando colourings

As far as we know, Wormald’s Conjecture (i.e. every cubic
graph of order 0 (mod 4) has a Wormald Colouring) is open.

What happens if we consider Strong Wormald Colourings
instead? Is it true that every cubic graphs of order congruent
to 0 (mod 4) has a Strong Wormald Colouring?

The answer is negative in general.

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): construct an
infinite family of graphs without a Strong Wormald Colouring.

GOOD NEWS: the family of these examples seems to
represent a very thin subclass of the class of all cubic graphs
and, even if they do not admit a Strong Wormald Colouring,
all of them admit a 2–bisection and hence a Strong Ando
Colouring.
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Cubic Graphs with no Strong Wormald Colouring

The next natural step is the search of cubic graphs (of order a
multiple of four) without a Strong Wormald Colouring.

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): an infinite
family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.

Hence the infinite family is not a counterexample for Ando’s
Conjecture.



Cubic Graphs with no Strong Wormald Colouring

We have completed an exhaustive search for cubic graphs
without a Strong Wormald Colouring up to 28 vertices:
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family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.
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Cubic Graphs with no Strong Wormald Colouring
(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): There are
exactly 131 graphs without a Strong Wormald Colouring
among the cubic graphs of order congruent to 0 (mod 4) and
at most 28 vertices.

Order Conn. 1 Conn. 2 Conn. 3 Total

4 0 0 0 0
8 0 0 0 0

12 0 0 0 0
16 1 1 1 3
20 20 3 1 24
24 18 1 0 19
28 72 12 1 85

Table: Number of cubic graphs of order 0 (mod 4) up to 28 vertices
which do not admit a strong Wormald Colouring.

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): an infinite
family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.
Hence the infinite family is not a counterexample for Ando’s
Conjecture.



Cubic Graphs with no Strong Wormald Colouring

Moreover, we have also computationally verified among the
131 examples that:

Corollary (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Wormald’s Conjecture does not have any counterexamples with
less than 32 vertices.

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): an infinite
family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.

Hence the infinite family is not a counterexample for Ando’s
Conjecture.



Cubic Graphs with no Strong Wormald Colouring
Note that all 2-connected examples admit a 3–edge colouring
and hence they admit a 2–bisection and an Ando Colouring as
well.
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Figure: A complete list of all 2–connected cubic graphs without a
Strong Wormald Colouring of order at most 28
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family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.
Hence the infinite family is not a counterexample for Ando’s
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(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017): an infinite
family of graphs without a Strong Wormald Colouring
admitting a 2–bisection.

Hence the infinite family is not a counterexample for Ando’s
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Strong Wormald Colouring of cubic graphs: |V | ≡ 2
(mod 4)

Facts

Evident connection between Wormald and (Strong) Ando’s
Conjectures, but also a large gap between them.

Indeed, Wormald’s Conjecture is only for cubic graphs of order
a multiple of four while (Strong) Ando’s Conjecture is stated
for all cubic graphs.
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Strong Wormald Col. of cubic graphs: |V | ≡ 2 (mod 4)
Recall that

Proposition (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Let G be a cubic graph graph with |V (G )| ≡ 2 mod 4 admitting
a Strong Wormald Colouring. Then, G admits a Strong Ando
Colouring (and so an Ando Colouring).

(Abreu, Goedgebeur, DL, Mazzuoccolo; 2017) –
Computationally: Every cubic graph of order 2 (mod 4) and
at most 22 vertices admits a Strong Wormald Colouring (and
hence a (Strong) Ando Colouring).

Problem (Abreu, Goedgebeur, DL, Mazzuoccolo; 2017)

Does every cubic graph of order 2 (mod 4) have a Strong
Wormald Colouring?

Proposition implies that a positive answer to Problem would
imply (Strong) Ando’s conjecture for all cubic graphs of order
order 2 (mod 4).
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