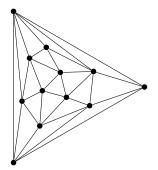
Connections between decomposition trees of 3-connected plane triangulations and hamiltonian properties

Gunnar Brinkmann Jasper Souffriau Nico Van Cleemput

Ghent University

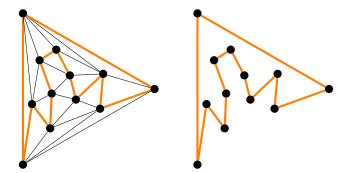
Triangulation

A triangulation is a plane graph in which each face is a triangle.



Hamiltonian cycle

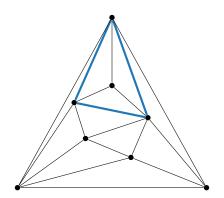
A hamiltonian cycle in G(V, E) is a subgraph of G(V, E) which is isomorphic to $C_{|V|}$.



A graph is hamiltonian if it contains a hamiltonian cycle.

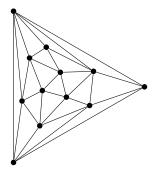
Separating triangles

A separating triangle S in a triangulation T is a subgraph of T such that S is isomorphic to C_3 and T - S has two components.



4-connected triangulations

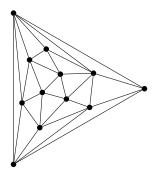
A triangulation is 4-connected if and only if it contains no separating triangles.



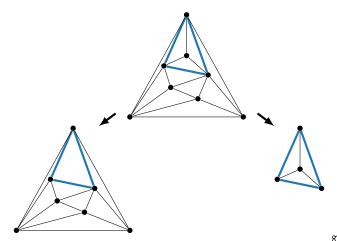
Whitney

Theorem (Whitney, 1931)

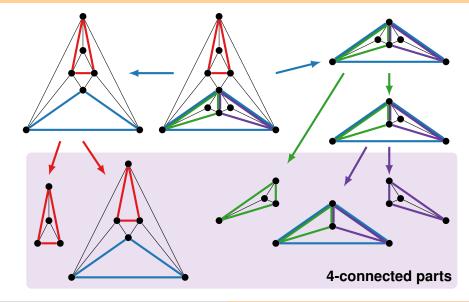
Each triangulation without separating triangles is hamiltonian.



Splitting triangulations

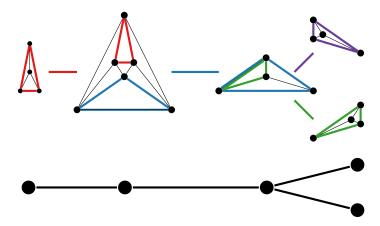


Recursively splitting triangulations



Decomposition tree

Vertices: 4-connected parts Edges: separating triangles



Decomposition trees and hamiltonicity

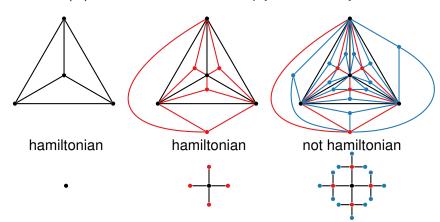
For each tree T there exist hamiltonian triangulations which have T as decomposition tree.

A triangulation G with decomposition tree T is hamiltonian if ...

- Whitney (1930): |E(T)| = 0
- Thomassen (1978), Chen (2003): |E(T)| < 1
- Böhme, Harant, Tkáč (1993): $|E(T)| \leq 2$
- Jackson, Yu (2002): $\Delta(T) < 3$

Jackson and Yu

 $\Delta(T) \leq 4$ is not sufficient to imply hamiltonicity.

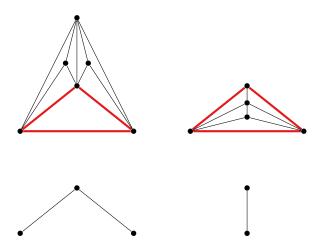


Question

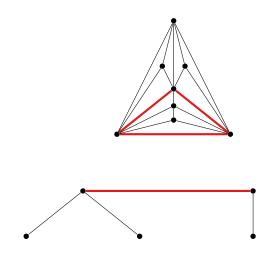
Can the result of Jackson and Yu be improved?

Which trees can arise as decomposition trees of non-hamiltonian triangulations?

Subdividing a face with a graph



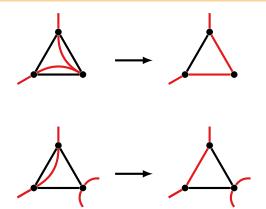
Subdividing a face with a graph



Subdividing a non-hamiltonian triangulation

Lemma

When a non-hamiltonian triangulation is subdivided, then the resulting graph is also non-hamiltonian.

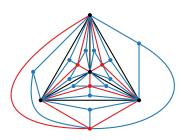


Toughness

A graph is 1-tough if it cannot be split into *k* components by removing less than *k* vertices.

A hamiltonian graph is 1-tough.

Graphs that are not 1-tough are trivially non-hamiltonian.



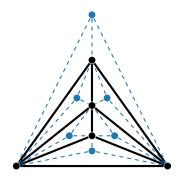
Remove 4 black and 4 red vertices

12 blue components remain

Creating a non-hamiltonian plane graph

Lemma

When in a plane graph with more faces than vertices each face is subdivided, then the resulting plane graph is non-hamiltonian.



The subdivided graph is not 1-tough.

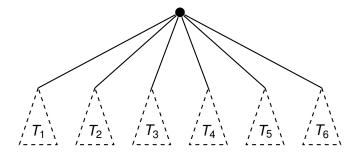
Decomposition trees with $\Delta > 6$

Theorem

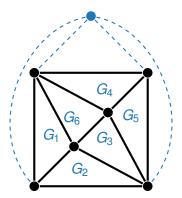
For each tree T with $\Delta(T) \geq 6$, there exists a non-hamiltonian triangulation G, such that T is the decomposition tree of G.

Constructive proof.

Assume $\Delta(T) = 6$.

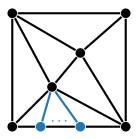


Choose triangulation G_i with decomposition tree T_i (1 $\leq i \leq$ 6)



A non-hamiltonian triangulation with T as decomposition tree.

$$\Delta(T) > 6$$



Δ: 0 1 2 3 4 5 6 7 ...

 Δ : 0 1 2 3 | 4 5 6 7

Not the decomposition tree of non-hamiltonian triangulation

 Δ : 0 1 2 3 | 4 5 | 6 7

Not the decomposition tree of non-hamiltonian triangulation

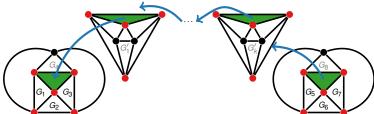
Possibly the decomposition tree of non-hamiltonian triangulation

Δ: 0 1 2 3_|4 5_|6 Not the decomposition Possibly the decomposition tree of non-hamiltonian tree of non-hamiltonian tritriangulation angulation

Multiple degrees > 3

Theorem

For each tree T with at least two vertices with degree > 3, there exists a non-hamiltonian triangulation G, such that T is the decomposition tree of G.



red vertices: 5 + k + (5 - 3) = 7 + kcomponents: 4 + k + 4 = 8 + k

Remaining cases: trees with one vertex of degree 4 or 5 and all other degrees at most 3.

One vertex of degree 4 or 5

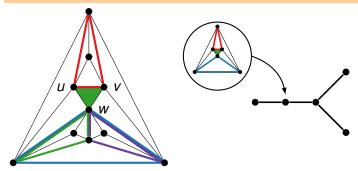
Theorem

Let G be a triangulation with decomposition tree T with only one vertex of degree 4 or 5 and all other vertices of degree at most 3. Then G is 1-tough.

Theorem (Jackson and Yu, 2002)

Let G be a triangulation with decomposition tree T, $\Delta(T) \leq 3$ and uvw a facial triangle of G that is also a facial triangle in a vertex of T with degree at most 2.

Then G has a hamiltonian cycle through uv and vw.



This implies:

Non-hamiltonian triangulations with decomposition trees with one vertex of degree k > 4 and all others of degree at most 3 exists if and only if...

- non-hamiltonian triangulations with decomposition tree $K_{1,k}$ exist.
- 4-connected triangulations exist with facial triangles t_1, \ldots, t_k so that no hamiltonian cycle C and distinct edges $e_1, \ldots, e_k \in C$ exist such that $e_i \in t_i$.

Also valid for $k \in \{1, 2, 3\}$

Specialised search

Lemma

All triangulations on at most 31 vertices with $K_{1,4}$ as decomposition tree are hamiltonian.

Lemma

All triangulations on at most 27 vertices with $K_{1,5}$ as decomposition tree are hamiltonian.

Prove that for each 4-tuple of vertex-disjoint triangles in a 4-connected triangulation there exists a hamiltonian cycle that shares an edge with each of the triangles.

or

Find a counterexample.

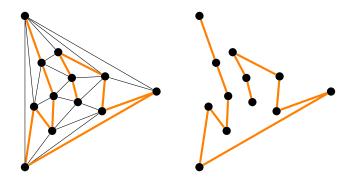
... and now?

Prove that for each 5-tuple of triangles T_1 , T_2 , T_3 , T_4 , T_5 in a 4-connected triangulation there exists a hamiltonian cycle C and distinct edges e_1 , e_2 , e_3 , e_4 , $e_5 \in C$ such that $e_i \in T_i$.

or

Find a counterexample.

A hamiltonian path in G(V, E) is a subgraph of G(V, E) which is isomorphic to $P_{|V|}$.



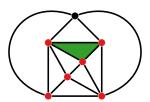
A graph G(V, E) is traceable if it contains a hamiltonian path.

Theorem

For each tree T with $\Delta(T) \geq 8$, there exists a non-traceable triangulation G, such that T is the decomposition tree of G.

Theorem

For each tree T with a pair of vertices with degrees k_1 and k_2 with $(k_1, k_2) \in \{(6, 4), (6, 5), (6, 6), (7, 4), (7, 5), (7, 6), (7, 7)\}$ and all others of degree at most 3, there exists a non-traceable triangulation G, such that T is the decomposition tree of G.

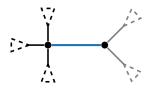


Decomposition trees with $\Delta = 4$

Theorem

Let T be a tree with one vertex of degree 4 and all others of degree at most 3. Then any triangulation which has T as decomposition tree is traceable.

Decomposition trees with $\Delta = 4$



Hamiltonian-connected

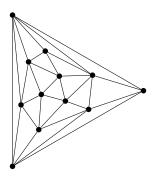
A hamiltonian path connecting x and y is a hamiltonian path P such that x and y have degree 1 in P.

A graph G(V, E) is hamiltonian-connected if for each pair x, yof distinct vertices in V there exists a hamiltonian path connecting x and y.

4-connected triangulations

Theorem (Thomassen, 1983)

Each triangulation without separating triangles is hamiltonian-connected.



3-connected triangulations

Theorem

Let G be a 3-connected triangulation such that there is an edge e which is contained in all separating triangles. Then G is hamiltonian-connected.

Decomposition tree

Theorem

Let T be a tree with maximum degree 1. Then any triangulation which has T as decomposition tree is hamiltonian-connected.

Theorem

Let T be a tree with maximum degree at least 4. Then T is the decomposition tree of a 3-connected triangulation which is not hamiltonian-connected.



Decomposition tree

Lemma

On up to 21 vertices all triangulations that have a decomposition tree with maximum degree 2 are all hamiltonian-connected

Lemma

On up to 20 vertices all triangulations that have a decomposition tree with maximum degree 3 are all hamiltonian-connected

Δ: 0 1 2 3 4 5 6 7

 Δ : 0 1_|2 3 4 5 6 7

Always hamiltonianconnected

 $\Delta: 0 1_{1}2 3_{1}4 5 6 7$

Always hamiltonianconnected

Possibly not hamiltonian-connected

Summary for hamiltonian-connectedness

Overview

Definition

A graph G is k-edge-hamiltonian-connected if for any $X \subset \{x_1x_2 : x_1, x_2 \in V(G), x_1 \neq x_2\}$ such that $1 \leq |X| \leq k$ and X is a forest of paths, $G \cup X$ has a hamiltonian cycle containing all edges in X.

1-edge-hamiltonian-connected is equivalent to hamiltonianconnected.

Definition

A graph G is k-hamiltonian if for any k vertices v_1, \ldots, v_k in G, $G - \{v_1, \ldots, v_k\}$ is hamiltonian.

Table

