Flows and edge-colorings on regular graphs

Eckhard Steffen

Paderborn University

Eckhard Steffen Flows and edge-colorings on regular graphs

We consider (multi-) graphs, i.e. multiedges are allowed (no loops). For an edge $v, w \in V(G)$,

 $\mu(\mathbf{v},\mathbf{w})=\#$ edges between \mathbf{v} and \mathbf{w}

$$\mu(G) = \max\{\mu(v, w) : v, w \in V(G)\}.$$

A graph G is r-regular, if $d_G(v) = r$, for each $v \in V(G)$.

An *r*-regular graph is an *r*-graph if $|\partial(X)| \ge r$ for each odd $X \subseteq V(G)$.

A k-edge-coloring of G is a function $\phi : E(G) \longrightarrow \{1, \ldots, k\}$ such that $\phi(e) \neq \phi(f)$ for adjacent edges e and f. The chromatic index $\chi'(G)$ is the smallest number k such that there is k-coloring of G.

Vizing's Theorem (1965)

If G is a graph, then $\chi'(G) \leq \Delta(G) + \mu(G)$.

Shannon's Theorem

If G is a graph, then $\chi'(G) \leq \frac{3}{2}\Delta(G)$.

A graph G is class 2 if $\chi'(G) > \Delta(G)$ and class 1 otherwise.

Every r-regular class 1 graph is an r-graph.

A graph G is k-overfull if |V(G)| is odd, $\Delta(G) = k$ and $\frac{|E(G)|}{\lfloor \frac{1}{2} |V(H)| \rfloor} > k$. It is easy to see that G is k-overfull if and only if 2|E(G)| > k(|V(G)| - 1).

Conjecture (Seymour 1979)

If G is an r-graph, then $\chi'(G) \leq r+1$.

An orientation D of G is an assignment of a direction to each edge, and for $v \in V(G)$, $E^{-}(v)$ is the set of edges of E(v) with head vand $E^{+}(v)$ is the set of edges with tail v. The oriented graph is denoted by D(G).

A nowhere-zero r-flow $(D(G), \phi)$ on G is an orientation D of G together with a function ϕ from the edge set of G into the real numbers such that

(1)
$$1 \le |\phi(e)| \le r - 1$$
, for all $e \in E(G)$, and
(2) $\sum_{e \in E^+(v)} \phi(e) = \sum_{e \in E^-(v)} \phi(e)$, for all $v \in V(G)$.

 $F_c(G) = \inf\{r | G \text{ has a nowhere-zero } r\text{-flow}\}$

is the *circular flow number* of G. It is known, that $F_c(G)$ is always a minimum and that it is a rational number.

That is the number we are interested in. It is a notorious difficult problem to determine the circular flow number of a given graph, or - even more difficult -, to characterize graphs with a specific flow number.

Proposition

A graph G is eulerian if and only if $F_c(G) = 2$.

Conjecture [Tutte 1954]

Let G be a graph. If G is a bridgeless graph, then $F_c(G) \leq 5$.

- equivalent to its restriction on cubic graphs

 $F_c(P)=5.$

Conjecture [Tutte 1966]

If G is a bridgeless graph without 3-edge-cuts, then $F_c(G) \leq 3$.

- equivalent to its restriction on 5-regular graphs

 $F_c(K_6) = 3$

Theorem [Pan, Zhu 2003]

For every $2 \le r \le 5$ there is a graph G with $F_c(G) = r$.

Theorem [es 2001]

Let $t \ge 1$ be an integer, and G be a (2t + 1)-regular graph. If G is bridgeless, then $F_c(G) = 2 + \frac{1}{t}$ or $F_c(G) \ge 2 + \frac{2}{2t-1}$.

Theorem [Schubert, es 2012]

For every integer $t \ge 1$ and every rational number $r \in \{2 + \frac{1}{t}\} \cup [2 + \frac{2}{2t-1}; 5]$, there exists a (2t + 1)-regular graph G with $F_c(G) = r$.

Theorem [Tutte]

A cubic graph G is bipartite if and only if $F_c(G) = 3$.

Theorem [es 2001]

Let $t \ge 1$ be an integer. A (2t + 1)-regular graph G is bipartite if and only if $F_c(G) = 2 + \frac{1}{t}$.

Characterizations: 2nd smallest possible flow number (smallest for non-bipartite graphs)

Theorem [Tutte]

- A cubic graph G is 3-edge-colorable if and only if $F_c(G) \leq 4$.
- A non-bipartite cubic graph G is 3-edge-colorable if and only if $F_c(G) = 4$.

Theorem [es 2013]

Let $t \ge 1$ be an integer. A non-bipartite (2t + 1)-regular graph G has a 1-factor F such that G - F is bipartite if and only if $F_c(G) = 2 + \frac{2}{2t-1}$.

Sketch of a proof

(
ightarrow) define a flow

$$(\leftarrow)$$
 Let $F_c(G) = 2 + \frac{2}{2t-1}$.

Lemma [es 2001]

Let n, k be integers such that $1 \le k \le n$. A graph G has a nowhere-zero $(1 + \frac{n}{k})$ -flow if and only if G has a nowhere-zero $(1 + \frac{n}{k})$ -flow ϕ such that for each $e \in E(G)$ there is an integer m such that $\phi(e) = \frac{m}{k}$.

There is a nowhere-zero
$$(2 + \frac{2}{2t-1})$$
-flow ϕ with $\phi(e) \in \{1, 1 + \frac{1}{2t-1}, 1 + \frac{2}{2t-1}\}.$

Show, that the set $F = \{e : \phi(e) = 1 + \frac{1}{2t-1}\}$ is a 1-factor of G.

Let $v \in V(G)$ and $|E^+(v)| > |E^-(v)|$. It turns out that $\sum_{e \in E^+(v)} \phi(e) \le t + 1 + \frac{1}{2t-1}$, and $|E^+(v)| = t + 1 = |E^-(v)| + 1$. Now it follows that for each vertex v precisely one edge of E(v) has flow value $1 + \frac{1}{2t-1}$.

Furthermore, let $v \in V(G)$ and color v black, if $E^+(v) = t + 1$ and white otherwise.

Show that this is a 2-coloring of V(G) which is proper on G - F.

Corollary

Let $t \ge 1$ be an integer. A (2t + 1)-regular graph G has a nowhere-zero $(2 + \frac{2}{2t-1})$ -flow if and only if G has a 1-factor F such that G - F is bipartite.

Corollary

Let $t \ge 1$ be an integer and G be (2t + 1)-regular graph. If $F_c(G) \le 2 + \frac{2}{2t-1}$, then G is a class 1 graph.

Observation

There is a flow number, namely 4, that separates cubic class 1 and cubic class 2 graphs from each other.

Does there exist such number for (2t + 1)-regular graphs if t > 1. No!

We think that such a number exists for cubic graphs is just due to the fact that $\frac{2}{2t-1} = \frac{2}{t}$ iff t = 1.

Proposition [es 2001]

For
$$k \ge 1$$
 holds: $F_c(K_{2k+2}) = 2 + \frac{2}{k}$.

Proposition

For every integer t > 1 and every rational number $r \in \{2 + \frac{1}{t-1}\} \cup [2 + \frac{2}{2t-3}; 5]$, there exists a (2t + 1)-regular class 2 graph G with $F_c(G) = r$.

Proposition

For every integer t > 1 there are (2t + 1)-regular graphs G_1 and G_2 such that G_1 is a class 1 graph, G_2 is a class 2 graph, and $F(G_1) = F(G_2) = 2 + \frac{2}{t}$.

Every k-regular class 1 graph is a k-graph.

Theorem

For every integer $t \ge 1$ there is a (2t + 1)-graph G which is a class 2 graph and $F_c(G) = 2 + \frac{3}{3t-2}$.

If t > 1, then $\frac{2}{2t-1} < \frac{3}{3t-2} < \frac{2}{t}$.

For an integer $t \geq 1$ let

 $\Phi(2t+1) = \inf\{F_c(G) : G \text{ is a } (2t+1)\text{-regular class } 2 \text{ graph}\}.$

Conjecture

For every integer
$$t \ge 1$$
: $\Phi(2t+1) = 2 + \frac{2}{2t-1}$.

Problem

Is it true that for every integer t > 1 and every rational number rwith $2 + \frac{2}{2t-1} < r \le 2 + \frac{2}{t}$ there are (2t + 1)-regular graphs H_1 and H_2 such that H_1 is class 1, H_2 is class 2, and $F_c(H_1) = F_c(H_2) = r$.

Problems and Conjectures

Conjecture

Let $t \ge 1$ be an integer and G a (2t + 1)-regular graph. If G is a class 1 graph, then $F_c(G) \le 2 + \frac{2}{t}$.

For t = 1 true.

Conjecture

Let t > 1 be an integer. If G is a (2t + 1)-graph, then $F_c(G) \le 2 + \frac{2}{t}$.

This conjecture says that every (2t + 1)-regular graph G with $F_c(G) > 2 + \frac{2}{t}$ has an overfull subgraph H with $\Delta(H) = 2t + 1$.

For t = 1 true. For t = 2 it is Tutte's 3-flow conjecture. If t is even, say t = 2t', then it is Jaeger's circular flow conjecture for (4t' + 1)-regular graphs. Jaeger conjectured that every 4t'-connected graph has a $(2 + \frac{1}{t'})$ -flow.

Thank you very much!