On Longest Cycles in Essentially 4 - connected Planar Graphs

J. Harant

TU Ilmenau, Germany

(joint work with I. Fabrici and S. Jendrol', Košice, Slovakia)

Gent, August 2016

- All graphs *G* considered here are *polyhedral*, i.e. planar and 3-connected.
- n = n(G) order of G
- circ(G) length of a longest cycle of G (circumference of G)
- If circ(G) = n, then G is hamiltonian and a longest cycle is a hamiltonian cycle.

伺 ト く ヨ ト く ヨ ト

- All graphs *G* considered here are *polyhedral*, i.e. planar and 3-connected.
- n = n(G) order of G
- circ(G) length of a longest cycle of G (circumference of G)
- If circ(G) = n, then G is hamiltonian and a longest cycle is a hamiltonian cycle.

伺 ト く ヨ ト く ヨ ト

- All graphs *G* considered here are *polyhedral*, i.e. planar and 3-connected.
- n = n(G) order of G
- circ(G) length of a longest cycle of G (circumference of G)
- If circ(G) = n, then G is hamiltonian and a longest cycle is a hamiltonian cycle.

伺 ト イヨト イヨト

- All graphs *G* considered here are *polyhedral*, i.e. planar and 3-connected.
- n = n(G) order of G
- circ(G) length of a longest cycle of G (circumference of G)
- If circ(G) = n, then G is hamiltonian and a longest cycle is a hamiltonian cycle.

直 と く ヨ と く ヨ と

There are infinitely many maximal planar graphs G with

 $circ(G) \leq 9n(G)^{\log_3 2}$ (log₃ 2 = 0.6309...).

- Is the exponent log₃ 2 smallest possible for maximal planar graphs ?
- Can log₃ 2 be decreased if *arbitrary* polyhedral graphs are considered ?
- Later the coefficient 9 was decreased several times.

@▶ ◀ ⋽ ▶ ◀

There are infinitely many maximal planar graphs G with

 $circ(G) \leq 9n(G)^{\log_3 2}$ (log₃ 2 = 0.6309...).

- Is the exponent log₃ 2 smallest possible for maximal planar graphs ?
- Can log₃ 2 be decreased if *arbitrary* polyhedral graphs are considered ?
- Later the coefficient 9 was decreased several times.

< ∃ → <

There are infinitely many maximal planar graphs G with

 $circ(G) \leq 9n(G)^{\log_3 2}$ (log₃ 2 = 0.6309...).

- Is the exponent log₃ 2 smallest possible for maximal planar graphs ?
- Can log₃ 2 be decreased if *arbitrary* polyhedral graphs are considered ?
- Later the coefficient 9 was decreased several times.

- A 🖻 🕨 - A

There are infinitely many maximal planar graphs G with

 $circ(G) \leq 9n(G)^{\log_3 2}$ (log₃ 2 = 0.6309...).

- Is the exponent log₃ 2 smallest possible for maximal planar graphs ?
- Can log₃ 2 be decreased if *arbitrary* polyhedral graphs are considered ?
- Later the coefficient 9 was decreased several times.

→ □ → → □ →

Circumference circ(G) of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$circ(G) \le 9n(G)^{\log_3 2}$$
 (log₃ 2 = 0.6309...).

G. Chen and X. Yu, 2002

There is a positive constant c such that $\operatorname{circ}(G) \ge c \cdot n(G)^{\log_3 2}$ for an arbitrary polyhedral graph G on n vertices.

T. Tutte, 1956 A 4-connected planar graph is hamiltonian.

同 ト イ ヨ ト イ ヨ ト

Circumference circ(G) of a polyhedral graph G

J.W. Moon and L. Moser, 1963

There are infinitely many maximal planar graphs G with

$$circ(G) \le 9n(G)^{\log_3 2}$$
 (log₃ 2 = 0.6309...).

G. Chen and X. Yu, 2002

There is a positive constant c such that $\operatorname{circ}(G) \ge c \cdot n(G)^{\log_3 2}$ for an arbitrary polyhedral graph G on n vertices.

T. Tutte, 1956

A 4-connected planar graph is hamiltonian.

< 注 → < 注

Definition

A graph G is essentially 4-connected if G is 3-connected and each 3-separator forms the neighborhood of a vertex of degree 3.

Definition

A graph G is essentially 4-connected if G is 3-connected and each 3-separator forms the neighborhood of a vertex of degree 3.

• $circ(G) \ge \frac{2n(G)+4}{5}$. (Jackson, Wormald 1992)

- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic*. (Grünbaum, Malkevitch 1976, Zhang 1987)
- If c > ²/₃, then there is an infinite family of graphs G such that circ(G) ≤ c ⋅ n(G).
 (Jackson, Wormald 1992)
- The last statement is even true for *maximal* planar graphs.

• $circ(G) \ge \frac{2n(G)+4}{5}$. (Jackson, Wormald 1992)

- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic*. (Grünbaum, Malkevitch 1976, Zhang 1987)
- If c > ²/₃, then there is an infinite family of graphs G such that circ(G) ≤ c ⋅ n(G).
 (Jackson, Wormald 1992)
- The last statement is even true for *maximal* planar graphs.

通 と イ ヨ と イ ヨ と

•
$$circ(G) \ge \frac{2n(G)+4}{5}$$
.
(Jackson, Wormald 1992)

- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic*. (Grünbaum, Malkevitch 1976, Zhang 1987)
- If c > ²/₃, then there is an infinite family of graphs G such that circ(G) ≤ c ⋅ n(G).
 (Jackson, Wormald 1992)
- The last statement is even true for *maximal* planar graphs.

直 ト イヨ ト イヨ ト

- $circ(G) \ge \frac{2n(G)+4}{5}$. (Jackson, Wormald 1992)
- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic*. (Grünbaum, Malkevitch 1976, Zhang 1987)
- If c > ²/₃, then there is an infinite family of graphs G such that circ(G) ≤ c ⋅ n(G).
 (Jackson, Wormald 1992)
- The last statement is even true for *maximal* planar graphs.

ゆ ト イヨ ト イヨト

- $circ(G) \ge \frac{2n(G)+4}{5}$. (Jackson, Wormald 1992)
- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic*. (Grünbaum, Malkevitch 1976, Zhang 1987)
- If c > ²/₃, then there is an infinite family of graphs G such that circ(G) ≤ c ⋅ n(G).
 (Jackson, Wormald 1992)
- The last statement is even true for *maximal* planar graphs.

A 4-connected maximal planar graph G' on 32 vertices.

同 ト イ ヨ ト イ ヨ ト

・ロト ・日・・日・・日・・ つくの

A essentially 4-connected maximal planar graph G on $32 + 2 \times 32 - 4 = 92$ vertices.

∃ >

• G has 32 black vertices

- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices

- A 🗄 🕨

- G has 32 black vertices
- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices

- A - B - M

- G has 32 black vertices
- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices

- G has 32 black vertices
- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices

- G has 32 black vertices
- the *red vertices* are independent
- a longest cycle of G has at most $2 \times 32 = 64$ vertices
- there is a cycle on 64 vertices

- G' a 4-connected maximal plane graph on n' vertices.
- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- *G* is an *essentially* 4-*connected maximal plane* graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

直 と く ヨ と く ヨ と

• G' - a 4-connected maximal plane graph on n' vertices.

- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- *G* is an *essentially* 4-*connected maximal plane* graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト

- G' a 4-connected maximal plane graph on n' vertices.
- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- *G* is an *essentially* 4-*connected maximal plane* graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

- G' a 4-connected maximal plane graph on n' vertices.
- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

- G' a 4-connected maximal plane graph on n' vertices.
- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.

• Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- G' a 4-connected maximal plane graph on n' vertices.
- *G* obtained from *G'* by inserting a new vertex into each face of *G'* and connecting it with the tree boundary vertices of that face by an edge.
- G is an essentially 4-connected maximal plane graph on n = n' + (2n' 4) vertices.
- The 2n' − 4 vertices in V(G) \ V(G') are pairwise independent.
- Hence, each cycle of G contains at most $2n' = \frac{2n+8}{3}$ vertices.

白 ト イヨ ト イヨ ト

• $circ(G) \ge \frac{2n(G)+4}{5}$ - Jackson, Wormald 1992

There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \leq \frac{2n(G)+8}{3}$.

- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic* Grünbaum, Malkevitch 1976, Zhang 1987 There is an infinite family of *essentially* 4-*connected cubic*
 - planar graphs G such that $circ(G) \leq \frac{76}{77}n(G)$

I. Fabrici, J.H., S. Jendrol, 2008, 2016

(i)
$$circ(G) \ge \frac{n(G)+4}{2}$$
.

(ii)
$$\operatorname{circ}(G) \geq \frac{3}{5}n(G)$$
 if $\Delta = 4$.

(iii) $circ(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- circ(G) ≥ ³/₄n(G) if G is cubic Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that circ(G) ≤ ⁷⁶/₇₇n(G).
- 1. Fabrici, J.H., S. Jendrol, 2008, 2016 (i) $circ(G) \ge \frac{n(G)+4}{2}$. (ii) $circ(G) \ge \frac{3}{5}n(G)$ if $\Delta = 4$. (iii) $circ(G) \ge \frac{13}{21}(n(G) + 4)$ if G is maximal planar.

・ロト ・同ト ・ヨト ・ヨト

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- $circ(G) \ge \frac{3}{4}n(G)$ if G is *cubic* Grünbaum, Malkevitch 1976, Zhang 1987

There is an infinite family of *essentially* 4-*connected cubic* planar graphs G such that $circ(G) \leq \frac{76}{77}n(G)$.

1. Fabrici, J.H., S. Jendrol, 2008, 2016 (i) $circ(G) \ge \frac{n(G)+4}{2}$. (ii) $circ(G) \ge \frac{3}{5}n(G)$ if $\Delta = 4$. (iii) $circ(G) \ge \frac{13}{21}(n(G) + 4)$ if G is maximal planar.

- 4 同 6 4 日 6 4 日 6

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- circ(G) ≥ ³/₄n(G) if G is cubic Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that circ(G) ≤ ⁷⁶/₇₇n(G).

1. Fabrici, J.H., S. Jendrol, 2008, 2016 (i) $circ(G) \ge \frac{n(G)+4}{2}$. (ii) $circ(G) \ge \frac{3}{5}n(G)$ if $\Delta = 4$. (iii) $circ(G) \ge \frac{13}{21}(n(G) + 4)$ if G is maximal planar.

(4月) イヨト イヨト

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- circ(G) ≥ ³/₄n(G) if G is cubic Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that circ(G) ≤ ⁷⁶/₇₇n(G).

I. Fabrici, J.H., S. Jendrol, 2008, 2016

(i)
$$\operatorname{circ}(G) \geq \frac{n(G)+4}{2}$$
.
(ii) $\operatorname{circ}(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.
(iii) $\operatorname{circ}(G) \geq \frac{13}{21}(n(G)+4)$ if G is maximal planar.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- circ(G) ≥ ³/₄n(G) if G is cubic Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that circ(G) ≤ ⁷⁶/₇₇n(G).

I. Fabrici, J.H., S. Jendrol, 2008, 2016

(i)
$$circ(G) \ge \frac{n(G)+4}{2}$$
.

(ii)
$$\operatorname{circ}(G) \geq \frac{3}{5}n(G)$$
 if $\Delta = 4$.

(iii) $\mathit{circ}(G) \geq rac{13}{21}(\mathit{n}(G)+4)$ if G is maximal planar

ъ

- $circ(G) \ge \frac{2n(G)+4}{5}$ Jackson, Wormald 1992 There is an infinite family of essentially 4-connected maximal planar graphs G such that $circ(G) \le \frac{2n(G)+8}{3}$.
- circ(G) ≥ ³/₄n(G) if G is cubic Grünbaum, Malkevitch 1976, Zhang 1987
 There is an infinite family of essentially 4-connected cubic planar graphs G such that circ(G) ≤ ⁷⁶/₇₇n(G).

I. Fabrici, J.H., S. Jendrol, 2008, 2016

(i)
$$circ(G) \geq \frac{n(G)+4}{2}$$
.
(ii) $circ(G) \geq \frac{3}{5}n(G)$ if $\Delta = 4$.
(iii) $circ(G) \geq \frac{13}{21}(n(G) + 4)$ if G is maximal planar.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

- A cycle C of G is an *outer-independent-3-cycle* (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

・ 同 ト ・ ヨ ト ・ ヨ ト

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

伺 と く ヨ と く ヨ と

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

伺 と く ヨ と く ヨ と

- A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C) is an independent set of vertices and d(x) = 3 for all x ∈ V(G) \ V(C).
- Lemma: If G is an essentially 4-connected planar graph, then G contains an OI3-cycle C.
- Let C be a longest OI3-cycle of G.
- For each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G).
- Lemma: If C is a cycle of a plane graph G on at least 4 vertices such that int(C) ∩ V(G) is an independent set of vertices of degree 3 in G and, for each edge xy of C, x and y do not have a common neighbor in int(C) ∩ V(G), then |int(C) ∩ V(G)| ≤ ¹/₂(|V(C)| 4).
- $n(G) = |V(C)| + |int(C) \cap V(G)| + |ext(C) \cap V(G)| \le 2|V(C)| 4.$

- If $|int(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on |V(C)|.
- If $|V(C)| \leq 5$, then, obviously, $|int(C) \cap V(G)| = 0$.

- If $|int(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on |V(C)|.
- If $|V(C)| \leq 5$, then, obviously, $|int(C) \cap V(G)| = 0$.

- If $|int(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on |V(C)|.
- If $|V(C)| \leq 5$, then, obviously, $|int(C) \cap V(G)| = 0$.

- If $|int(C) \cap V(G)| = 0$, then nothing is to prove.
- Induction on |V(C)|.
- If $|V(C)| \leq 5$, then, obviously, $|int(C) \cap V(G)| = 0$.

Lemma: If *C* is a cycle of a plane graph *G* on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in *G* and, for each edge *xy* of *C*, *x* and *y* do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $|int(C_i) \cap V(G)| \le \frac{|V(C_i)|}{2} 2$ for i = 1, 2, 3 (ind. hyp.).
- $|V(C_1)| + |V(C_2)| + |V(C_3)| = |V(C)| + 6.$
- $|int(C_1) \cap V(G)| + |int(C_2) \cap V(G)| + |int(C_3) \cap V(G)| = |int(C) \cap V(G)| 1.$

Lemma: If *C* is a cycle of a plane graph *G* on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in *G* and, for each edge *xy* of *C*, *x* and *y* do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $|int(C_i) \cap V(G)| \le \frac{|V(C_i)|}{2} 2$ for i = 1, 2, 3 (ind. hyp.).
- $|V(C_1)| + |V(C_2)| + |V(C_3)| = |V(C)| + 6.$
- $|int(C_1) \cap V(G)| + |int(C_2) \cap V(G)| + |int(C_3) \cap V(G)| = |int(C) \cap V(G)| 1.$

Lemma: If *C* is a cycle of a plane graph *G* on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in *G* and, for each edge *xy* of *C*, *x* and *y* do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $|int(C_i) \cap V(G)| \le \frac{|V(C_i)|}{2} 2$ for i = 1, 2, 3 (ind. hyp.).
- $|V(C_1)| + |V(C_2)| + |V(C_3)| = |V(C)| + 6.$
- $|int(C_1) \cap V(G)| + |int(C_2) \cap V(G)| + |int(C_3) \cap V(G)| = |int(C) \cap V(G)| 1.$

Lemma: If *C* is a cycle of a plane graph *G* on at least 4 vertices such that $int(C) \cap V(G)$ is an independent set of vertices of degree 3 in *G* and, for each edge *xy* of *C*, *x* and *y* do not have a common neighbor in $int(C) \cap V(G)$, then $|int(C) \cap V(G)| \leq \frac{1}{2}(|V(C)| - 4)$.

- $|int(C_i) \cap V(G)| \le \frac{|V(C_i)|}{2} 2$ for i = 1, 2, 3 (ind. hyp.).
- $|V(C_1)| + |V(C_2)| + |\overline{V}(C_3)| = |V(C)| + 6.$
- $|int(C_1) \cap V(G)| + |int(C_2) \cap V(G)| + |int(C_3) \cap V(G)| = |int(C) \cap V(G)| 1.$

Thank you for your attention !